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Adam, Esther, Vita and, especially, my compatriot Rafa Valero, to whom I am per-

sonally indebted, for always hearing and supporting me. We were very close to start a

joint project that I hope we will be able to resume in the future.

Regarding the development of the first paper, I would like to thank Susmita Das-

gupta for her useful and encouraging comments. Suggestions received at the 2015

QED Jamboree and 21st EAERE meeting are also very much appreciated. A number

of individuals provided invaluable assistance in locating and accessing the many data

sources used in this paper. I would like to mention, in particular, Axel Kuschnerow,

Trevor Fenton, Sonia Ripado, Juan Manzano, Fabrice Breneur and Andrea Gurrieri. I

also acknowledge support from AEMET, Meteo France, Deutscher Wetterdienst, UK

Met Office and CNMCA-Servizio de Climatologia for kindly providing me with most

of the meteorological data employed.

Throughout my short academic career, I have met quite a lot of people and I would

like to remember some of them with these lines. I would like to dedicate a few words



ii
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Resumen

La relación que une al ser humano con el medio ambiente ha sido, es y, posiblemente,

será de carácter indisoluble. El hombre y el medio natural están interrelacionados y

es ingenuo pensar que nuestras acciones no van a afectar en mayor o menor medida a

nuestro entorno. Y viceversa. Es sensato, pues, pensar que los recientes cambios en los

patrones climáticos en respuesta al continuo calentamiento global afectan a la manera

en que nos comportamos, tomamos decisiones o producimos.

El análisis de esta relación, aunque siempre ha preocupado a la comunidad cient́ıfica

desde tiempos inmemoriales, ha permanecido en el letargo durante los últimos siglos,

narcotizado por el efecto demoledor de la revolución industrial y el desarrollo del Estado

del Bienestar. Tal ha sido este periodo de cadencia, que algunos autores han llegado a

afirmar que el desarrollo económico en los tiempos modernos hab́ıa dejado de depender

del entorno, del cual se hab́ıa llegado a disociar por completo mediante el uso de la

tecnoloǵıa y de las estructuras productivas avanzadas. Esta teoŕıa es conocida en inglés

con el término economic decoupling.

No ha sido hasta la última década que, al albur de la evidencia presentada por la

comunidad cient́ıfica, los investigadores y el público en general han sido conscientes de

que la interrelación entre el ser humano y el medio ambiente no hab́ıa cesado en ningún

momento y que éste, a ráız de la emisión descontrolada de gases de efecto invernadero

(GEI) estaba comprometiendo la estabilidad del sistema Tierra. El cambio climático

antropogénico y las nefastas consecuencias proyectadas por su acción han supuesto un

renacer de la preocupación por entender los mecanismos que rigen la relación entre el

hombre y el medio y motivan originalmente el desarrollo de esta tesis.

Aśı, esta tesis estudia la relación economı́a-medio ambiente cuantitativamente en

ambas direcciones. Por un lado, mide los efectos agregados en los sectores productivos

de los recientes cambios en el comportamiento de las variables meteorológicas. Por otro

lado, estudia las implicaciones económicas y medioambientales derivadas de adoptar

distintas estrategias para combatir los daños producidos por el cambio climático.

Con un importante valor añadido. Además de facilitarnos estimaciones precisas de

las implicaciones de la relación bidireccional ser humano-medio ambiente, esta tesis

trata de arrojar luz sobre cómo esta relación se ha modificado con el tiempo: se ha

mantenido estable, se ha intensificado o, por el contrario, es cada vez más débil. En

términos cient́ıficos este aspecto se conoce como adaptación al cambio climático.



2 Resumen

La adaptación al cambio climático es un concepto muy en boga que, todav́ıa no ha

sido explorado cuantitativamente con rigurosidad por la comunidad cient́ıfica. El IPCC

(Intergovernmental Panel on Climate Change), organismo internacional que evalúa los

aspectos técnicos, tecnológicos y socio-económicos relativos al cambio climático, viene

urgiendo en sus últimos Informes de Evaluación (Assessment Reports) a la comunidad

cient́ıfica de la importancia de estudiar con profundidad mediante ejercicios teóricos y

emṕıricos el concepto de adaptación, pues éste supone uno de los pilares principales,

junto con la mitigación, para luchar contra el cambio climático. Esta tesis recoge el

guante del IPCC y trata de ahondar en el entendimiento de esta variable.

Esta tesis nace, en definitiva, con el objetivo de dar respuesta a dos preguntas sobre

las que no existe todav́ıa una respuesta categórica: “¿existe una relación entre renta

agregada y clima?” y “¿cuál es la manera óptima de abordar la lucha contra el cambio

climático en condiciones de incertidumbre?” La primera es una pregunta que corroe

a los investigadores desde finales del s. XIX y que cobra especial relevancia en un

contexto de constante incremento en las temperaturas. La segunda es consecuencia

de un fenómeno que nos golpea incansable desde el siglo pasado y que supone un reto

para la humanidad en los próximos años: el cambio climático.

Intentaremos responder a la primera pregunta sirviéndonos de un ejercicio emṕırico

apoyado en técnicas econométricas y estad́ısticas, mientras que para la segunda desar-

rollaremos un modelo clima-economı́a adaptado para el análisis en entornos de incer-

tidumbre, describiendo los resultados con formas de visualización novedosas.

Caṕıtulo 1. Clima y renta: Lecciones de las principales regiones

europeas

Se espera que el cambio climático antropogénico haga aumentar la temperatura media

de la superficie terrestre inexorablemente en las próximas décadas. Según el IPCC, “la

temperatura media de la Tierra ascenderá durante el siglo XXI bajo todos los escenarios

de emisiones de GEI analizados y este incremento se espera que se sitúe en el intervalo

de 0.3oC a 4.8oC”. A la luz de esta afirmación, se hace vital conocer el grado de

exposición de las estructuras productivas a las variables medioambientales y cómo las

primeras se ven afectadas por la naturaleza cambiante de las segundas. En particular, es

urgente determinar si existe una relación entre los patrones meteorológicos y el producto

interior bruto de las naciones, aśı como determinar el signo y la magnitud de esta

relación. Es también crucial evaluar si los incrementos previstos en las temperaturas

socavarán el potencial de crecimiento de estas naciones.

En el primer caṕıtulo de esta tesis se explora la relación entre clima y actividad
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económica agregada sirviéndonos de una muestra con datos económicos y climáticos

pertenecientes a las regiones de los principales páıses europeos. En particular, esta

muestra abarcaŕıa las regiones de los cinco mayores páıses europeos (Alemania, Reino

Unido, Francia, Italia y España) para un periodo comprendido entre los años 1990 y

2012.

Tradicionalmente, la relación entre clima (temperatura, fundamentalmente) y ac-

tividad económica agregada se ha cuantificado a través de dos enfoques: el primero,

apoyado en la literatura de la economı́a del desarrollo y crecimiento, examina la relación

entre la temperatura media y el nivel de actividad agregado en una muestra de sección

transversal de páıses. Este es el llamado método hedónico o Ricardiano, del cual fue

pionero en este contexto Mendelsohn et al. (1994). Otros ejemplos de esta metodoloǵıa

aplicados a distintas áreas y sectores son los trabajos de Sachs y Wagner (1997); Gallup

et al. (1998); Nordhaus (2006); Fisher et al. (2006) y, más recientemente, Tack et al.

(2015). Utilizando datos contemporáneos a nivel municipal para 12 páıses de América.

Dell et al. (2009) identifican una relación negativa entre renta y temperatura entre

páıses e, incluso, entre regiones dentro de esos páıses. Estos autores sostienen que los

páıses cálidos de su muestra tienden a ser más pobres, en una cuant́ıa de 8.5% por cada

1oC adicional, lo que coincide cualitativamente con otros ejemplos de la literatura.

Otros autores, como Schelling (1992); Poterba (1993); Stern (2006); Nordhaus

(2008); Tol (2009), apuntan en esa misma dirección. Adicionalmente, estudios como

el llevado a cabo por Albuoy (2016) identifican una correlación negativa entre tem-

peratura y productividad empresarial dentro de Estados Unidos. No obstante, existe

otra corriente de autores que defienden que las correlaciones observadas en estos tra-

bajos responden a una asociación espúrea entre temperatura y algunas caracteŕısticas

nacionales, tales como la calidad institucional. Entre esa corriente de pensamiento

encontramos a Acemoglu et al. (2002), Easterly y Levine (2003), Rodrik et al. (2004).

Su razonamiento descansa en el papel de las variables omitidas, mediante el cual la

no inclusión en este tipo de regresiones de otras variables correlacionadas con la tem-

peratura que explicaŕıan también variaciones en la producción agregada en tiempos de

prosperidad, sesgaŕıan la importancia que se le da a las variables puramente geográficas

en el enfoque hedónico. En este ejercicio, se trata de atenuar los efectos de la omisión

de variables relevantes mediante la inclusión de un indicador sintético regional del nivel

de reputación y calidad institucional a escala europea.

Existe una segunda y novedosa manera de enfocar este problema. Dell et al. (2012)

examinan la relación histórica entre los cambios de temperatura y precipitaciones ex-

perimentados por un páıs y su economı́a utilizando como estrategia de identificación

las variaciones exógenas anuales de las temperaturas y las precipitaciones. Dell et al.
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(2012) encuentran un efecto negativo significativo entre el aumento de temperaturas

y el crecimiento económico de los páıses estudiados, pero sólo para los páıses relativa-

mente más pobres. En particular, sus estimaciones concluyen que un aumento de 1◦C

en la temperatura media de un determinado páıs reduciŕıa la tasa de crecimiento del

producto agregado per cápita de dicho páıs en alrededor de 1,3 puntos porcentuales.

Para los páıses relativamente más ricos de su muestra, las variaciones en las temperat-

uras no tendŕıan un efecto discernible en el comportamiento de la renta agregada.

Las conclusiones de Dell et al. (2009) y Dell et al. (2012) son llamativas en cuanto

que dejaŕıan a la mayor parte del mundo desarrollado al margen de los efectos negativos

del cambio climático. Efectos, por otra parte, descritos como universales y de carácter

general para toda la Tierra por otras disciplinas cient́ıficas y enfatizados por los suce-

sivos informes del IPCC. Dada la relevancia de este asunto, aunque las afirmaciones de

Melissa Dell y coautores fueran irrefutables, se hace necesario llevar a cabo ejercicios

emṕıricos con diversas muestras que confirmen o desmientan estos mensajes. Deter-

minar fielmente el grado de exposición de las economı́as desarrolladas al nivel de las

temperaturas y a la variación de éste es crucial y es lo que nos ocupa en este ejercicio.

A diferencia de los autores referidos, en este trabajo se tendrá en consideración la het-

erogeneidad en las caracteŕısticas climáticas de cada páıs mediante el análisis regional

de los mismos, paliando aśı, una posible fuente de falta de identificación presente al

trabajar con datos agregados.

Existe, cada vez, una mayor evidencia que apunta a la existencia de vulnerabilidades

de las economı́as más desarrolladas respecto a las condiciones medioambientales, impli-

cando que la adaptación a las cambiantes condiciones climáticas en todos los márgenes

es demasiado costosa. La mayoŕıa de estos estudios se centran primordialmente en el

análisis de la respuesta de los rendimientos agŕıcolas a eventos meteorológicos extremos

(Roberts y Schlenker, 2011; Burke y Emerick, 2016). En contextos no agŕıcolas, Graff

Zivin y Neidell (2014) documentan una respuesta negativa de la oferta laboral de in-

dividuos expuestos a entornos cálidos, mientras que Hsiang et al. (2013) argumentan

que las altas temperaturas seŕıan fuente de conflictos civiles, incluso en páıses ricos.

Más recientemente, Deryugina y Hsiang (2014) estudian la relación de las tem-

peraturas medias diarias con la renta agregada anual de los condados de los Estados

Unidos, encontrando un descenso medio de la productividad regional del 2% por cada

1oC adicional sobre 15oC. De manera similar, Colacito et al. (2014) documentan evi-

dencia emṕırica en favor del efecto negativo de las temperaturas sobre el crecimiento

económico en los Estados Unidos, especialmente en verano, usando datos procedentes

de 135 estaciones meteorológicas.

En este caṕıtulo se sigue el esṕıritu de los diversos trabajos de Melissa Dell y
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coautores con el fin de desarrollar en estudio de caso integral para Europa. Haciendo

un barrido general al mapa europeo, tomando los páıses con mayor importancia en

términos económicos (Alemania, Reino Unido, Francia Italia y España) y dada la di-

mensión geográfica de estos páıses, es posible encontrar un grado de heterogeneidad

climática que nos faculta para explotar su relación con las variables macroeconómicas

deseadas. Nos beneficiamos para este respecto de la distinción administrativa regional

promovida por la Comisión Europea (NUTS), a través de la cual toda la UE es parce-

lada en distintos niveles de agregación. Este marco de actuación es el generalmente

utilizado por los Estados Miembros para formular y aplicar las distintas poĺıticas re-

gionales, siendo aśı el marco apropiado para desarrollar nuestro estudio. En particular,

las poĺıticas medioambientales son diseñadas para el nivel NUTS 2 de agregación, que

será el utilizado en este trabajo.

En la dimensión transversal de este estudio (enfoque hedónico), basándonos en la

especificación econométrica de Dell et al. (2009), encontramos que 1oC adicional está

asociado con un nivel medio de renta per cápita inferior en 1,6-2,2%. Esta relación

negativa, en consonancia con lo descrito por Dell et al. (2012), se ve amplificada en las

regiones relativamente más pobres. Complementamos este ejercicio analizando el im-

pacto a corto plazo de las oscilaciones meteorológicas. Identificamos que una variación

media de las temperaturas en 1oC en el año en curso penaliza el crecimiento potencial

de las regiones europeas en una cuant́ıa de 0,06 puntos porcentuales, lo que en términos

acumulados representaŕıa un efecto total en el largo plazo ligeramente superior a lo es-

timado en la primera fase de este estudio y que pone de manifiesto la posibilidad de

adaptar a largo plazo los daños producidos por los cambios climáticos.

Caṕıtulo 2. Un modelo recursivo con adaptación para la eval-

uación integral del cambio climático

Tal y como pone de manifiesto el IPCC en sus sucesivos Informes de Evaluación, la

adaptación al cambio climático juega un papel crucial a la hora de gestionar adecuada-

mente los riesgos que este fenómeno plantea. Este argumento ha sido enfatizado en

el recientemente difundido 5o Informe de Evaluación (AR5), donde se presta mucha

atención a las fuerzas que impulsan los procesos de adaptación al cambio climático aśı

como a los diversos efectos que estas fuerzas tienen. Ejemplos de adaptación son la

construcción de diques, las transformaciones de los campos de cultivo o las vacunas.

Los rendimientos de las inversiones en mitigación están restringidos por las grandes

inercias climáticas y el lento funcionamiento del ciclo del carbón y de los GEI y sus

frutos, por tanto, se dilatan bastante en el tiempo. Mientras, la potencialmente más
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cara inversión en adaptación, conlleva efectos palpables en el corto-medio plazo.

Está generalmente aceptado entre la comunidad cient́ıfica que una estrategia sat-

isfactoria para hacer frente al cambio climático debe contener cantidades positivas de

mitigación y adaptación. No obstante, la combinación adecuada de estas magnitudes

es todav́ıa una cuestión no resuelta. Ambas opciones son necesarias porque sirven para

reducir las vulnerabilidades al cambio climático a través de dos maneras complemen-

tarias pero distintas. Mediante la primera atacamos las causas mientras que la segunda

aborda los efectos. Por tanto, parece natural incluir la inversión en adaptación en los

Modelos Integrados de Evaluación (Integrated Assessment Models o IAM, en sus si-

glas en inglés), modelos muy usados para estudiar las implicaciones económicas de un

sistema económico basado en las emisiones de GEI.

Un IAM para el cambio climático es un modelo multi-ecuación que relaciona la

actividad económica agregada con un modelo simple de la dinámica climática y del

ciclo del carbono para analizar los impactos económicos del calentamiento global. En

otras palabras, es esencialmente un modelo dinámico de una economı́a con una ex-

ternalidad endógena controlable mediante la emisión de GEI. Los modelos IAM han

sido históricamente herramientas muy útiles para entender determinados aspectos de

la economı́a del cambio climático—especialmente a la hora de describir los resultados

fruto de complicadas interacciones entre grandes retardos y enormes inercias presentes

en el ciclo de los GEI. Estos modelos han sido utilizados, por ejemplo, en el AR4 (Parry

et al., 2007), AR5 (IPCC, 2013), el Informe Stern (Stern, 2006), y en el Interagency

Working Group on Social Cost of Carbon (2010), desempeñando éste último un papel

fundamental a la hora de diseñar la poĺıtica federal de emisiones en los Estados Unidos.

La metodoloǵıa IAM fue iniciada con el desarrollo del modelo Dynamic Integrated Cli-

mate Change, más conocido como DICE (Nordhaus, 1991, 1993). Ejemplos actuales

incluyen los modelos DICE o su versión regionalizada, RICE, (Nordhaus y Yang, 1996;

Nordhaus y Boyer, 2000; Nordhaus, 2010; Nordhaus y Sztorc, 2013), el modelo PAGE

(Hope et al., 1993; Hope, 2006), y el modelo FUND (Tol, 1999, 2013), entre otros.

En el segundo caṕıtulo de esta tesis, se avanza en la modelización de la inversión

en adaptación en el contexto de los IAMs. La integración de la adaptación en estos

modelos está todav́ıa en un estado primigenio. Sólo disponemos de unos pocos ejemplos

en la literatura, en los cuales la inversión en adaptación se incluye de manera expĺıcita.

En este caṕıtulo compararemos algunos de ellos enmarcados en el modelo DICE y

estudiaremos como la proporción óptima entre mitigación y adaptación vaŕıa entre

dichas especificaciones. Se mostrará como mitigación y adaptación se comportan como

complementarios estratégicos, con cantidades siempre positivas de recursos asociadas

a cada concepto a lo largo del tiempo.
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El análisis integrado de la inversión en adaptación nos ayudará a sopesar los costes

y beneficios aśı como los riesgos de estas poĺıticas y debeŕıa proporcionar detalles rele-

vantes para su desarrollo e implantación. En Patt et al. (2010), el lector puede sondear

como los modelizadores han elegido describir la inversión en adaptación en el marco

de los modelos de evaluación integrada. Recientemente, se han hecho esfuerzos para

incluir adaptación expĺıcitamente como una variable de control en los IAMs (de Bruin

et al., 2009; Lecocq y Shalizi, 2007). Aún aśı, existe un amplio acuerdo a la hora de

señalar que la adaptación debeŕıa estar mejor representada en estos modelos (Stern,

2006). En este caṕıtulo, exploramos la designación óptima de adaptación bajo distintas

especificaciones y estructuras de costes.

Para ello, utilizaremos el modelo DICE como nuestro modelo IAM de referencia.

El modelo DICE estándar asume un único productor a nivel global, el cual debe ele-

gir simultáneamente la cantidad óptima de tres tipos de variables: consumo actual,

inversión en bienes de capital y grado de reducción de emisiones de GEI (mitigación).

Este modelo se enriquece en este ejercicio para acompasar diferentes estrategias de

adaptación y aśı analizar detenidamente cómo el mix óptimo de mitigación-adaptación

se ve alterado de acuerdo a diferentes estrategias y costes. En primer lugar, introduci-

mos el modelo AD-DICE basándonos en de Bruin et al. (2009), en el cual la adaptación

proactiva se comporta como una variable de control que sólo tiene efecto en el peri-

odo vigente, de tal manera que la adaptación de un periodo no afecta a los daños del

periodo siguiente. Exploramos como el mix cambia en respuesta a distintas formas de

la función de costes. Calibrando el modelo para imitar la senda óptima de mitigación

del modelo DICE original, se demuestra cómo el mix óptimo se equilibra entre ambas

variables, demostrando aśı la naturaleza complementaria de estos dos objetos. Es sólo

después de alrededor de 100 años cuando la inversión en mitigación empieza a dom-

inar claramente. Esto ocurre en respuesta a la reducción de costes de mitigación en

los últimos años de la simulación. Se demuestra también que la composición del mix

óptimo depende de manera crucial de la forma de la función de costes de protección.

Como algunos tipos de estrategias de adaptación tienen una naturaleza de stock en

lugar de flujo, ya que sus efectos se disipan en el tiempo, en un segundo ejercicio explo-

ramos la posibilitad de construir un stock de adaptación que afecte a nuestra economı́a

persistentemente. Siguiendo a McCarl y Wang (2013), modificamos el modelo DICE

original y observamos el comportamiento del mix óptimo en el tiempo bajo este nuevo

comportamiento. Demostramos que la posibilidad de crear un stock de infraestruc-

tura adaptativa ayuda a combatir los efectos del cambio climático, creando incentivos

para el planificador social para asignar una gran cantidad de recursos a la inversión

en adaptación desde un principio, dilatando aśı una mitigación exhaustiva hasta que
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se hace urgente en el largo plazo cuando se alcanzan picos en las concentraciones at-

mosféricas de GEI.

Con el objetivo de preparar nuestro modelo para incorporar futuras modificaciones

y con el ánimo de preparar el marco idóneo para realizar análisis en entornos de in-

certidumbre, en esta fase del proyecto formulamos el modelo DICE en modo recursivo.

Para ello, seguimos la aproximación de Traeger (2014). Este autor ha presentado re-

cientemente una versión de DICE con un número reducido de variables de estado, para

ser resuelto con técnicas de programación dinámica. La reducción de variables de es-

tado se consigue básicamente mediante una simplificación del ciclo del carbono y de las

ecuaciones dinámicas que gobiernan las temperaturas. Esto nos deja un margen extra

para poder incorporar nuevas caracteŕısticas al modelo. Los beneficios de formular

DICE en modo recursivo son, entre otros, que el modelo ahora no es sensible a ningún

tipo de condición inicial/terminal, disponemos de las funciones de reacción del plani-

ficador social para realizar simulaciones alternativas y, sobre todo, crea el marco ideal

para incluir distintos tipos de incertidumbre y/o añadir un comportamiento estocástico

tanto a las variables como a los parámetros del modelo.

Caṕıtulo 3. El equilibrio óptimo entre mitigación y adaptación

al cambio climático: un análisis bajo incertidumbre

El cambio climático es un fenómeno golpeado por numerosas fuentes de incertidumbre,

presentes tanto en los fenómenos climatológicos que lo gobiernan como en la mod-

elización de las relaciones entre variables, y los investigadores deben esforzarse en in-

cluir estas perturbaciones en sus modelos. Sin embargo, incluir dimensiones adicionales

en los, ya de por śı, complejos modelos conlleva un coste no fácilmente asumible. Es-

pećıficamente, hace que la mayoŕıa de estos modelos sufran del mal de la dimension-

alidad (curse of dimensionality). En el tercer caṕıtulo de esta tesis, nos beneficiamos

de la metodoloǵıa propuesta por Traeger (2014), y adelantada en el caṕıtulo anterior,

para tratar de solventar estos problemas. Esta metodoloǵıa descansa en una reducción

de las variables de estado necesarias para describir fehacientemente la dinámica del

ciclo del carbono.

En un intento de seguir avanzando en la modelización de la adaptación en el con-

texto de los modelos IAM, adaptamos en este caṕıtulo esta nueva metodoloǵıa con el

fin de arrojar luz al problema de cómo se altera la composición del equilibrio entre

mitigación y adaptación bajo distintos escenarios estocásticos.

El modelo DICE en modo recursivo trabaja expĺıcitamente con agentes racionales

operando en el tiempo en entornos potencialmente estocásticos. En este modelo, el
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planificador toma una secuencia de decisiones óptimas sujeto a diversas restricciones

medioambientales. Si el entorno está sujeto a shocks exógenos, está claro que las

decisiones óptimas futuras dependerán de la percepción del planificador de la magnitud

de esos shocks. El modo de tomar decisiones en el presente en función de las condiciones

actuales y las expectativas futuras reciben el nombre de formulación recursiva ya que

explotan el hecho de que el problema de tomar la decisión mantiene la misma estructura

con el tiempo, es decir, es recurrente. El uso de métodos recursivos hace posible tratar

este rango de problemas dinámicos, ya sean determińısticos o estocásticos.

En el pasado, algunos autores han conseguido expresar el modelo DICE de manera

recursiva. Por ejemplo, Kelly y Kolstad (1999, 2001) implementaron el modelo DICE-

1994 como un modelo recursivo de programación dinámica y analizaron con detalle

como el planificador aprende a tomar decisiones con el tiempo. Sin embargo, estos

autores no consideran por separado el efecto de las contribuciones de la incertidum-

bre, el aprendizaje y la aleatoriedad en las poĺıticas óptimas. Algunos años después,

Leach (2007) utiliza la misma versión de DICE para demostrar como el aprendizaje se

ralentiza cuando se añaden más fuentes de incertidumbre al modelo. Estas son, ambas,

contribuciones seminales a la evaluación económica de la incertidumbre en el cambio

climático. Una corriente distinta de la literatura introduce la incertidumbre en imple-

mentaciones no recursivas de IAMs. La más cercana a nuestra visión es la de Keller

et al. (2004), los cuales estudian el aprendizaje en una versión anterior de DICE. No

obstante, el hecho de trabajar con metodoloǵıas no recursivas sólo les faculta para es-

tudiar un número reducido de escenarios. Son, estos, ejercicios que ofrecen pinceladas

muy útiles de las respuestas de los agentes a la incertidumbre pero que, en ningún

caso, pueden sustituir los análisis derivados de los métodos de programación dinámica

estocástica. Finalmente, los métodos basados en análisis de Monte-Carlo son las aprox-

imaciones más comunes al análisis de incertidumbre en la literatura de los IAM. Estos

métodos, sin embargo, no modelizan la toma de decisiones bajo incertidumbre sino

que presentan meros análisis de sensibilidad que trazan comportamientos medios en

sucesivas simulaciones determińısticas.

Como se ha puesto de manifiesto en el caṕıtulo anterior, adaptarse al cambio

climático es clave para afrontar los efectos del calentamiento global y el IPCC ha

hecho un llamamiento para que se avance en su comprensión y en su integración en los

IAM. En el caṕıtulo anterior se analizó cómo los diferentes esquemas de adaptación

interfieren con la cantidad óptima asignada a mitigación en condiciones deterministas.

Aqúı, extendemos el análisis anterior para incluir distintas fuentes de incertidumbre que

pueden alterar el comportamiento ideal del planificador. Incluir estas perturbaciones en

el modelo podŕıa distorsionar los resultados generales tal y como los conocemos hasta
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ahora. Por ejemplo, Lecocq y Shalizi (2010) encuentran en su modelo de equilibrio

parcial que, cuando se habilita la incertidumbre, la mitigación se torna más eficiente

en términos de costes que la adaptación.

En este caṕıtulo se llevan a cabo una serie de experimentos que cubren un amplio

menú de fuentes de incertidumbre que, potencialmente, pueden afectar a nuestro mod-

elo. Dividimos estas incertidumbres en 4 grandes categoŕıas y trabajamos con un ejem-

plo dentro de cada categoŕıa. Primero, identificamos los comportamientos derivados

del desconocimiento parcial de los valores de los parámetros del modelo (incertidumbre

epistémica). En este campo, estudiaremos como trabajar con un valor desconocido de la

sensibilidad climática afecta a las poĺıticas óptimas y a las magnitudes básicas del mod-

elo. Segundo, permitiremos la posibilidad de contar con procesos exógenos estocásticos

gobernando la dinámica del modelo. Se presentará el estudio del crecimiento aleatorio

de la tecnoloǵıa de producción como ejemplo de esta categoŕıa. A continuación, estu-

diaremos la incertidumbre asociada a la manera en que los individuos, ejemplificados

en el planificador social, aprenden del pasado. En particular, equiparemos a nuestro

modelo con la propiedad de aprendizaje Bayesiano, a través del cual, el agente tiene

un determinado conocimiento a priori del valor de cierto parámetro que actualiza a

medida que observa las variables realizadas cada periodo. Por último, estudiaremos el

caso en que se permite la ocurrencia de catástrofes con cierta probabilidad. La manera

de modelizar este escenario es facultar al modelo con la existencia de puntos gatillo,

los cuales, una vez sobrepasados, alteran drásticamente la dinámica del modelo. Por

supuesto, el valor de estos puntos gatillo es desconocido para el planificador social.

Con carácter general, identificamos que un crecimiento estocástico del nivel de

tecnoloǵıa apenas afecta a la composición de la cesta óptima de mitigación y adaptación

mientras que la incertidumbre acerca del valor cierto de la sensibilidad climática y la

posibilidad de que un punto gatillo golpee al sistema inclinan al planificador social a

invertir relativamente más en mitigación. Se puede concluir que incluir incertidumbre

en el modelo, cualquiera que esta sea, tiende a favorecer la duradera pero lenta en

el tiempo inversión en mitigación frente a la instantánea pero ef́ımera inversión en

adaptación. Este estudio debeŕıa complementarse con una evaluación detallada de

cómo se comportaŕıa el modelo si se pudiera construir un stock de adaptación.

Conclusiones

Esta tesis estudia las implicaciones directas de la relación entre economı́a y medio

ambiente, prestando atención a las relaciones causa-efecto en ambas direcciones. Por

un lado, mide los efectos agregados en los sectores productivos de los cambios en

los patrones climáticos que vienen ocurriendo en las últimas décadas. Por otro lado,
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evalúa cómo las diferentes estrategias a la hora de abordar los efectos del cambio

climático afectan al medio ambiente. También estudia el proceso de adaptación al

cambio climático y trata de medir su nivel de importancia para absorber los costes

producidos por este fenómeno.

El primer caṕıtulo, sirviéndose de una muestra de las regiones europeas más impor-

tantes, destapa nueva evidencia en favor de como las crecientes temperaturas reper-

cuten negativamente tanto en el nivel agregado de actividad como en el potencial de

crecimiento de los estados miembros. En consonancia con otros autores, también se

muestra como este efecto se ve exacerbado en las regiones más desfavorecidas. A la

luz de este hecho, los poĺıticos y legisladores debeŕıan tener en cuenta la heterogenei-

dad regional a la hora de formular las poĺıticas medioambientales y de lucha contra

el cambio climático. Esta heterogeneidad también debe tenerse en mente cuando se

modelizan las interacciones entre clima y economı́a, por ejemplo, en los modelos IAM.

Dado que el cambio climático viene frecuentemente acompañado de la proliferación

de eventos meteorológicos extremos, la existencia de efectos no lineales debeŕıa ser

comprobada en futuros ejercicios. Al mismo tiempo, la evidencia microeconómica

sugiere que las unidades fundamentales de producción, como el capital humano, podŕıan

también exhibir comportamientos no lineales en respuesta a las temperaturas locales,

tal y como ponen de manifiesto Graff Zivin y Neidell (2014). Esto abre una nueva brecha

de investigación que será explorada en el futuro. En particular, utilizaremos para

Europa técnicas recientemente propuestas por Burke et al. (2015) para una muestra de

los Estados Unidos.

Al hilo del punto anterior, en un proyecto futuro, es mi objetivo estudiar las im-

plicaciones en la economı́a real de otros fenómenos generalmente asociados al cambio

climático, como por ejemplo, las seqúıas. Europa viene experimentando crecientes

episodios de seqúıa en las últimas décadas. Estos eventos, cada vez más frecuentes,

pueden poner en riesgo la sostenibilidad de la seguridad alimentaria del continente.

Para evaluar este problema, tenemos que medir cuidadosamente el efecto neto de los

recientes avances genéticos y agronómicos de las especies cultivadas y de los recientes

cambios de las temperaturas en la sensibilidad a la seqúıa de los cultivos. A esta pre-

gunta sólo se le puede dar respuesta emṕıricamente dado la cantidad de efectos de

distinto signo y magnitud que confluyen. Históricamente, un obstáculo para medir la

evolución de los cultivos ha sido la falta de datos precisos que cubrieran detallada-

mente todo el territorio. La proliferación de técnicas de muestreo modernos y el uso

de satélites para medir parámetros de los cultivos puede ayudarnos a subsanar este

problema.

Lobell et al. (2014) han desarrollado recientemente un estudio con estas carac-



12 Resumen

teŕısticas aplicado al cinturón del máız del medio-oeste estadounidense. En este tra-

bajo se identifica que, a pesar de que los rendimientos agŕıcolas han aumentado con

carácter general durante el periodo estudiado gracias a los avances agronómicos cen-

trados en aumentar la tolerancia de las semillas a la escasez de agua, la sensibilidad de

algunos tipos de cultivos, como el máız, es mayor ahora que al principio de la muestra.

Un comportamiento similar podŕıa ser esperado de los cultivos europeos pero ciertas

divergencias respecto al caso americano pueden aparecer en respuesta a las distintas

caracteŕısticas geográficas y agronómicas y a las distintas decisiones de producción en

Europa. Mi trabajo arrojaŕıa luz a este crucial asunto que atañe al sector agŕıcola

europeo.

Como se desprende del primer caṕıtulo, una amplia desagregación espacial es clave

en este tipo de estudios. Esto se manifiesta en que algunas áreas son más propensas,

de acuerdo a su geograf́ıa y orograf́ıa, a sufrir episodios de seqúıa más intensos y

prolongados. Al mismo tiempo, algunas variedades de cultivos son más eficientes a la

hora de tolerar cambios abruptos en los patrones de temperatura y precipitación. Por

tanto, desarrollar este trabajo con el máximo nivel de detalle geográfico es clave para

obtener resultados significativos.

En el segundo y tercer caṕıtulo, utilizando modelos IAM, se estudia la composición

óptima de las estrategias para luchar contra el cambio climático. Se pone especial

énfasis en cómo la existencia de incertidumbre puede alterar esa combinación óptima.

La metodoloǵıa empleada en estos caṕıtulos presenta algunos beneficios o ventajas

con respecto a la manera tradicional de formular y resolver los modelos IAM en la

literatura. En particular, esta no es sensible a la especificación de distintas condiciones

terminales del sistema y nos proporciona las funciones de reacción de los agentes, lo que

es muy conveniente para simular escenarios alternativos. Además, crea el marco ideal

para incluir caracteŕısticas adicionales al modelo, como por ejemplo, la posibilidad de

añadir incertidumbre o comportamientos estocásticos de las variables y parámetros que

gobiernan el modelo.

Este análisis de incertidumbre es ejecutado en el caṕıtulo 3 de la tesis, el cual

representa una nueva aproximación al análisis dinámico de la adaptación al cambio

climático mediante un modelo IAM recursivo. Muchas otras extensiones aparte de las

llevadas a cabo pueden ser diseñadas y aplicadas dentro de este modelo: incertidum-

bre de los parámetros que rigen la función de daño, especificaciones alternativas de

la función de daño, efectos persistentes de los shocks tecnológicos,... Adicionalmente,

distintos tipos de adaptación podŕıan ser modelizados conjuntamente. Por ejemplo,

Bosello et al. (2010) construyen un modelo más imbricado en el que se pueden encon-

trar distintos tipos de adaptación. En concreto, podemos distinguir entre adaptación
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anticipada (variable stock), adaptación reactiva (variable flujo) y acumulación de un

stock conocimiento de adaptación reactiva. Estas extensiones de nuestro modelo se

dejan para proyectos futuros.

En conjunto, esta tesis representa un compendio de evidencia y resultado teóricos

que reflejan los efectos perniciosos del cambio climático en las economı́as desarrolladas,

la limitada capacidad de estas economı́as para adaptarse a esos cambios y que muestra

cómo la toma de decisiones bajo incertidumbre para luchar contra el cambio climático

se inclina por atacar las causas más que los efectos de este proceso. Esta tesis manda

también un mensaje a la comunidad cient́ıfica y al público en general advirtiendo de

la necesidad de abordar un recorte intensivo de las emisiones de GEI para evitar el

agravamiento de estos efectos.

Esta tesis, además, supone el germen de una futura agenda de investigación basada

en la cuantificación de los efectos en la economı́a real de los cambios medioambientales

derivados del cambio climático y del análisis de las implicaciones que las decisiones

humanas tienen en el medio ambiente. Espero poder hacerme cargo de esta agenda en

el futuro inmediato.





Introduction

“People are part of the Earth system and they impact
and are impacted by its materials and processes.”

The relation between humans and the environment has been and will be indissol-

uble. We are interrelated and it is vague to think that our actions will not impact

the functioning of our surrounding environment to a greater or lesser extent. And vice

versa. It is reasonable to believe that recent changes in climatic patterns in response

to ongoing global warming will affect the way we behave, the way we produce, or the

way we take decisions.

This thesis studies the implications of the above relation in both directions. On

the one side, it measures the effects in the productive sector of the recent changes in

climatic patterns. On the other side, it assesses how different decisions about how

to deal with climate damages affect the economy and the environment. With one

important addition. Apart from measuring the implications in both directions, it is

also in our interest to find out whether those effects are being intensified over time.

To put it in another way, we want to know whether the human being is adapting to

climate change and up to what extent this is happening.

Anthropogenically driven climate change is expected to increase average global

temperatures inexorably in the upcoming decades. According to the Intergovernmental

Panel on Climate Change (IPCC), “Surface temperature is projected to rise over the

21st century under all assessed (emission) scenarios and that increase would range from

0.3◦C to 4.8◦C in response to different greenhouse gases emission pathways.” In light

of this, it is essential to know up to which extent the economic system is exposed to

environmental variables and how their changing nature affect economic performance.

In particular, it is urgent to determine whether a relationship between weather and

total income exists and quantify its sign and magnitude as well as assess whether

projected increases in temperatures will undermine the ability of countries to grow.

In Chapter 1 we explore the relationship between weather and economic activity in

assorted European regions. To do so, we construct a novel, regional dataset spanning

from years 1990 to 2012 that covers the five largest countries in Europe and match it

with aggregate income data. Looking at its cross-sectional dimension, we are able to
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identify the long-term (level) effect of weather on income. Moving then to its longitu-

dinal dimension, we benefit from the exogenous year-to-year variations in weather to

estimate the short-term impact (economic growth) of weather fluctuations. We find

that one additional degree is associated with a decline in the level of per capita Gross

Domestic Product (GDP) of 1.6% to 2.2%. In line with other authors, we find that

this effect is exacerbated in poor regions. We also attenuate the omitted variable bias,

very common in this approach, after controlling for regional institutional quality and

reputation. By studying the short-term dynamics we demonstrate how global warm-

ing undermines the ability to grow of the latter. These results supply new evidence

in favour of the negative effects of rising temperatures in certain areas of developed

economies. In light of this, policy makers should account for regional heterogeneity

when large-scale environmental policies are formulated. This heterogeneity should also

be borne in mind when the interactions between climate and economy are modelled,

for instance, in an Integrated Assessment Model (IAM).

As widely stated by the IPCC, adaptation plays a vital role as a way to manage

the risks that climate change poses. This has been profoundly emphasized in the

recently delivered 5th Assessment Report (IPCC, 2013), where a great deal of attention

is devoted to the forces driving adaptation to climate change as well as to the various

impacts that adaptation may have. Examples of adaptation are the building of dykes,

the changing of crop types, and vaccinations. The results of mitigation investment

are constrained by climatic inertia and the slow workings of the carbon and other

greenhouse gases cycles and hence take more time to be effective. While potentially

more expensive, adaptation could have larger effects on impacts more quickly.

In Chapter 2 we advance in the modelling of adaptation within IAMs. Integrated

Assessment Modelling of adaptation to climate change is still at its early stages. Only

a few examples in which adaptation is explicitly included in IAMs can be found in the

literature. In this chapter we compare some of them in the framework of the Dynamic

Integrated Climate Change, aka DICE, model (Nordhaus, 2008), and study how the

optimal balance between mitigation and adaptation varies across specifications. We

show how adaptation and mitigation behave as strategic complementaries, with pos-

itive amount of resources allocated to each concept over time. However, the optimal

adaptation-mitigation mix will depend critically on the nature of adaptation (flow ver-

sus stock) and the functions governing its behaviour, like the structure of protection

costs. Moreover, we also cast the model in a recursive way, suitable for addressing anal-

ysis under uncertainty, including stochastic state variables or incorporating additional

features, like Bayesian learning or the existence of tipping points.

Climate change is a phenomenon beset with major uncertainties and researchers
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should include them in IAMs. However, including further dimensions in IAMs comes

at a cost. In particular, it makes most of these models suffer from the curse of dimen-

sionality. In Chapter 3 we benefit from a state-reduced framework to overcome those

problems. In an attempt to advance in the modelling of adaptation within IAMs,

we apply this methodology to shed some light on how the optimal balance between

mitigation and adaptation changes under different stochastic scenarios. We find that

stochastic technology growth hardly affects the optimal bundle of mitigation and adap-

tation whereas uncertainty about the value of climate sensitivity and the possibility of

tipping points hitting the system change substantially the composition of the optimal

mix as both persuade the risk-averse social planner to invest more in mitigation. Over-

all, we identify that including uncertainty into the model tends to favour (long-lasting)

mitigation with respect to (instantaneous) adaptation. Further research should address

the properties of the optimal mix when a stock of adaptation can be built.





chapter 1

Weather and Income:

Lessons from the main

European regions

1.1 Introduction

Climate change is expected to increase average global temperatures inexorably in the

upcoming decades. In light of this, it is essential to know up to which extent the

economic system is exposed to environmental variables and how their changing nature

affect economic performance.1 In particular, it is urgent to determine whether a rela-

tionship between weather and total income exists and quantify its sign and magnitude

as well as to assess whether projected increases in temperatures will undermine the

ability of economies to grow.

The relationship between temperature and aggregate economic activity has tradi-

tionally been quantified using two approaches. One approach, emphasised in the growth

and development literature, has examined the relationship between average tempera-

ture and aggregate economic variables using cross-sections of countries. This is the

so-called hedonic or Ricardian approach and was first applied to weather variables and

economic outcomes by Mendelsohn et al. (1994). Further examples of this methodol-

ogy applied to different sectors and regions are the case studies by Sachs and Warner

(1997); Gallup et al. (1998); Nordhaus (2006); Fisher et al. (2006) and, more recently,

Tack et al. (2015). Using contemporary sub-national data at the municipality level for

12 countries in the Americas, Dell et al. (2009) find that a negative relationship be-

tween income and temperature exists when looking within countries, and even looking

within states within countries. The authors claim that hot countries tend to be poor,

with national income falling 8.5% per degree Celsius in the countries’ cross-section.

The message in Dell et al. (2009) is seconded by several examples in the literature. For

1The 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2013)
points out that “Surface temperature is projected to rise over the 21st century under all assessed
(emission) scenarios”. This increase in temperatures would range from from 0.3◦C to 4.8◦C according
to different greenhouse gases emission pathways.
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instance, Schelling (1992); Poterba (1993); Stern (2006); Nordhaus (2008); Tol (2009)

also point in that direction using different approaches. Other studies, like Albuoy

(2016), find a negative correlation between temperature and firm productivity within

the United States.

However, some authors argue that the correlations spotted with the Ricardian ap-

proach are mainly driven by spurious associations of temperature with national charac-

teristics such as institutional quality (e.g., Acemoglu et al., 2002; Easterly and Levine,

2003; Rodrik et al., 2004). Their reasoning hinges on the role of omitted variables,

by which other correlated variables, such as a country’s institutions or trade policy,

drive prosperity in contemporary times, leaving no important role for geography. We

will ignore this criticism during the first part of this study for the sake of comparison

between our findings and those of Dell et al. but ultimately will address this issue by

controlling for institutional quality and reputation using a multi-region government’s

quality index.

There exists a second and novel approach to weather and economic data. Dell

et al. (2012) take an approximation to climate data different from cross-section data

and micro evidence. They examine the historical relationship between changes in a

country’s temperature and precipitation and changes in its economic performance for

a sample of 150 countries. Their main identification strategy rests on the exogenous

year-to-year fluctuations in temperature and precipitation. They find a significant,

large, negative effect of higher temperatures not only on the level of output but also on

growth, but only in relatively poorer countries.2 In particular their estimates identify

that a 1◦C rise in temperature in a given year would reduce economic growth by about

1.3 percentage points (pp), a quite substantial figure. According to these authors,

changes in temperature would not have a robust, discernible effect on economic growth

for rich countries.

The findings in Dell et al. (2009) and Dell et al. (2012), though remarkable, are

subject to controversy, as most of the developed world would be left aside or hardly

affected by the consequences following a continued increase in global temperatures.

This scenario seems quite optimistic, especially after caring about the warning messages

delivered by the IPCC in their successive series of reports. Even in the event that their

conclusions were indisputable, the issue at hand has enough relevance to be worth a

cross-check. Determining faithfully the exposure of well-developed economies to global

warming is a major issue within the economics of climate change literature. Should

wealthy economies be affected by temperature changes, then a much larger fraction

2The use of annual variation to estimate the impact of climate change was first proposed by
Schlenker and Roberts (2009) and Deschênes and Greenstone (2007), who use annual county-level
U.S. data to estimate the impact of weather on U.S. agricultural output.
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of the global economy may be disturbed by climate change. Treating countries as a

whole entity, without caring about the within-country weather heterogeneity may be

a source of lack of identification that we will address in this exercise.

A continuously growing body of evidence suggests that even in well-developed coun-

tries some economic vulnerabilities could still remain, implying that adapting to all

climatic conditions along all margins is too costly. Most studies are based primarily in

the analysis of the response of agricultural yields to extreme weather events (Roberts

and Schlenker, 2011; Burke and Emerick, 2016). In non-agricultural contexts, Graff

Zivin and Neidell (2014) document a negative response of temperature-exposed labour

supply and Hsiang et al. (2013) claim that high temperatures continue to elicit costly

personal conflicts even in wealthy populations. More recently, Deryugina and Hsiang

(2014) relate daily temperatures with annual income in the United States counties

finding that this single environmental parameter still happens to play a significant

role in the overall economic performance, with a decline in average productivity of

roughly 2% per additional 1◦C over 15◦C. Similarly, Colacito et al. (2014) document

empirical evidence on the negative effect of temperature in the economic growth of the

United States, especially in summer. Again, they make use of nationally disaggregated

weather and income data from 135 weather stations across the country. Even a nega-

tive relationship between rising temperatures and economic growth has been recently

estimated by Bansal et al. (2015) using equity markets data.

We follow the spirit of Dell et al. (2009) and Dell et al. (2012) to develop an

integral case study for Europe.3 Having a quick glance at the European mainland

map and looking at the larger countries in economic terms, that is, Germany, France,

UK, Italy and Spain, and given the geographic dimensions of those countries, it is

possible to find the heterogeneous (exogenous) variation in climate-related variables

that enables us to exploit their relation with economic outcomes. We will benefit from

the statistical classification enacted by the European Union (EU), the Nomenclature

of territorial units for statistics (NUTS), through which the whole European map is

parcelled into different levels and regions. This framework is generally used by Member

States to apply their regional policies and is therefore the appropriate level for analysing

regional/national problems. In particular, environmental policies within the EU are

formulated in a regional (NUTS 2) level.4

3Contrary to the US case, there exists no centralised agency that gathers all the national weather
records. Our main challenge amounts to gathering all the meteorological data and make it homoge-
neous for comparison.

4The regular report on the social, economic and territorial situation and development of the regions
of the EU, which the Commission is required to produce every three years under Article 31 of Council
Regulation (EC) No. 1083/2006 concerning the European Regional Development Fund, has so far
been drafted mainly for the NUTS 2 level.
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All in all, this paper sheds light into some insights of the climate-income relation-

ship. First, we provide novel cross-sectional evidence using sub-national data for a set

of well-developed countries. In particular, we find that an additional degree is attached

to lower per capita income in an amount of 1.6-2.2%. This negative relationship is am-

plified for poor regions. At this point, we refute partially the findings in Dell et al.

(2009). A direct implication of the above is that, if some regions are more prone to

weather sensitivity, policy makers should develop regional-level policies that protect

those regions to (possibly extreme) weather events. As a by-product of the previous

point, when modelling the interplay between climate and the economy, researchers

should take into account the possible regional heterogeneity and thus, propose models

that incorporate this feature.5 Second, we complement the previous approach with

the short-term impact of weather fluctuations on economic performance and analyse

how this and the previous magnitudes relate. We find that an increase of average

temperatures of 1◦C today hampers the growth potential of regions almost by 0.06

pp, a potentially large impact if the change in temperatures is permanent. As of poor

regions, the net effect of a 1◦C rise in temperature is to decrease growth rates by 0.084

pp, slightly larger than the full sample effect. This case study represents the first

attempt to jointly document the short- and long-term relationship between weather

variables and aggregate income for an homogeneous sample of European regions.

The remainder of this chapter is organised as follows. In Section 1.2, we describe

all the data employed in this study and explain how it has been gathered. Section

1.3 explores the long-term relationship between weather and income by studying the

cross-sectional dimension of our dataset and measures the omitted variable bias in

our specification. Section 1.4 studies the short-term response of income to weather

fluctuations. In Section 1.5, we try to reconcile the previous magnitudes by the use of

a simple framework of convergence and adaptation. Finally, Section 1.6 concludes and

suggests future avenues for research.

1.2 Data

As mentioned in the introduction, there exists no European-broad agency that assem-

bles all the weather data required for this study. Besides that, the official European

statistical agency, EUROSTAT, does not provide either a detailed breakdown of re-

gional economic accounts prior to year 2000. Thus, the strategy in this paper has

5In this sense, Per Krusell and Anthony Smith in their yet unpublished manuscript “SimGlobe:
A Global Economy-Climate Model with High Regional Resolution” are about to propose such a
mechanism by adapting an heterogeneous agent dynamic macro model (the Aiyagari model) to an
IAM context.
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amounted to retrieve yearly data from national statistical offices and national climate

agencies in order to construct a region-wide database as longitudinally largest as pos-

sible. The unit of reference we have opted for is the NUTS classification. The NUTS

classification (Nomenclature of territorial units for statistics) is a hierarchical system

for dividing up the economic territory of the EU for the purpose of the collection, de-

velopment and harmonisation of EU regional statistics. We can identify several levels

of NUTS: NUTS 0 correspond to counties; NUTS 1, to major socio-economic regions;

NUTS 2, to basic regions for the application of regional policies; and NUTS 3, to small

regions for specific diagnoses of EU regional policies.

The purpose of the creation of the NUTS classification is the socio-economic analy-

ses of the European regions. While establishing a correlation between regions in terms

of size, NUTS also provides several analytical levels. The 1961 Brussels Conference

on Regional Economies, organised by the European Commission, found that NUTS

2 (basic regions) was the framework generally used by Member States to apply their

regional policies and was therefore the appropriate level for analysing regional/national

problems. For the purpose of appraising eligibility for aid from the Structural Funds,

regions whose development is lagging behind (regions covered by the Convergence Ob-

jective) have been classified at the NUTS 2 level. The areas eligible under the other

priority objectives have mainly been classified at the NUTS 3 level.

This study focuses on the five largest European countries for various reasons. De-

spite these countries belonging to a same geographic area and sharing institutional

characteristics, they show enough variability both in terms of economic and weather

patterns to make them suitable for a detailed econometric analysis. The heterogene-

ity in economic and weather variables can be easily spotted looking at the choropleth

maps displayed in Figure 1.1, where per capita GDP and total sun hours are depicted

for each region. A north-south polarisation is clearly observed, where northern regions

tend to be richer and southern regions tend to be hotter. More specifically, looking

at purely weather variables, we can note in Figure 1.2 that the south of Europe tends

to be warmer and the north, wetter. But still, reasonable heterogeneity both between

and within country can be observed.

Accordingly, we have decided to set the NUTS 2 level as the reference level for

comparison except for Spain. Spain’s NUTS 3 regions and NUTS 2 from the rest of

countries in this sample overlap both in terms of average surface and population.6

Moreover, this feature is also corroborated when we consider their weather pattern,

which are again very heterogeneous, as it could be seen in Figure 1.2. Additionally, the

relatively reduced number of Spanish NUTS 3 (51 regions) make them fairly manage-

6Please refer to Table 1.1 for further details.
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able. It is worth mentioning that, for the case of France, we could have resorted also

to the use of NUTS 3 data. Unfortunately, such detail in the breakdown of economic

data is not provided by the French statistical office.

All regional economic figures have been collected from their respective national

statistical offices. Their time span, fully described in Table 1.2, varies depending on

the availability, ranging from an early start for the Spanish variables, dated back at

1980, to a more recent of the Italian, available from year 1995. Note also that British

economic data come originally expressed in Sterling pounds. Hence, conversion to

constant Euros using historical exchange rates has been necessary. As of weather

variables, all of them have been provided also by the official weather organisms of each

country (see more details at Table 1.2).

Our approach and that of Dell et al. (2009) differ substantially in terms of the

data used. Firstly, they base their cross-section study on countries located on the

western hemisphere whereas our sample is focused on the eastern hemisphere, which

makes this one, as far as we know, the first attempt to developing a study relating

weather and economic variables carried out for this area. Another relevant feature of

our meteorological data is that all figures correspond to actual observed values collected

directly from weather stations located within the NUTS of reference. In this respect,

we have matched each NUTS with a weather station located in a geographic node

close to the place where most of the economic activity is agglomerated.7 Meanwhile,

these authors make use of gridded weather data, which is the result of interpolating

real weather data. In particular, they use the Matsuura and Willmott (2007) gridded

dataset, which has a resolution of 1◦×1◦.8 The use of gridded data in weather analysis

arise some potential pitfalls (see Aufhammer et al. (2013)), including the creation of

a fictitious correlation between weather measures that could bias our conclusions. In

our dataset, this issue is resolved by construction.

1.3 Cross-sectional evidence at the regional level

The theoretical background in which this section is embodied is the Ricardian (or

hedonic) method applied to climatic variables that stems from the original work by

Mendelsohn et al. (1994), which has been extensively used to measure the economic

implications of climate change, especially in the agricultural sector. The idea behind

this methodology is that climate shifts the production function for a determined econ-

omy. Producers in a certain area take climatic and geographic variables as given and

7Typically, this node corresponds to the capital or main city of the specific NUTS.
8111km × 111km.
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choose the optimal amount of output they want to produce and the corresponding

optimal level of inputs required for that level of production, given perfect competition

in both the input and output markets. With this reduced-form model, we estimate the

relation between climate and value and other exogenous geographic variables.

Let us assume that the net present value of aggregate production in a determined

region, Vi, is described by the following simplified equation

Vi =

∫ [∑
j

∑
k

PjQij(Xik, Zi)−
∑
k

MkXik

]
e−ϕtdt, (1.1)

where Pj are the market prices of each output produced, Qij are the quantities of each

output produced at each region i, Xik is a vector of purchased inputs, Mk is a vector

of input prices, Zi is a vector of exogenous variables and ϕ is the fixed interest rate at

which we discount future values. Producers within each region i choose the amount

of outputs Qij and inputs required Xik optimally, given prices. By solving (1.1) to

maximise net revenues and by folding the vector of prices of outputs and inputs Pj,

Mk into the vector of exogenous variables Zi, Vi can be expressed as a function of only

exogenous variables, Vi = f(Zi).

We base our estimations in the expression Vi = f(Zi) in order to examine the

weather-income relationship in a multi-region level.9 Resting on the Ricardian ap-

proach, the idea is to relate a dependent variable describing the value of all goods

produced in a certain region with a set of geographic and weather (exogenous) vari-

ables to production, summarised in the vector Zi. In a similar fashion to Dell et al.

(2009), we estimate the cross-sectional relationship between climate variables—mean

temperature and precipitation—, geographic variables and per capita income, with help

of the following Ricardian regression10

log(yi) = αi + β1poori + β2tempi + β3tempi × poori + β4precipi +X
′

iγ + εi, (1.2)

where yi represents per capita GDP in region i, poori classifies regions as rich or poor in

accordance to their level of per capita GDP being above or below the average sample

9It may well be the case that the reader could pose objections to the use of this methodology for
a small subset of countries but as Bryan and Jenkins (2015) point out: “The only estimates that are
unaffected by the small number of countries are the fixed parameters on individual-level predictors (the
number of individuals per country is typically large): provided there is not also a random component
attached to the slope, these parameters are estimated without bias and with the correct standard
errors (and non-coverage rate)”.

10By using variables in per capita terms, we avoid weighting observations by the economic size of
each region.
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analogue, tempi stands for annual average surface temperatures in region i, precipi
denotes the total amount of rainfall collected in region i, and Xi represents a vector

of region-specific geographic variables, such as elevation and distance to the sea. We

estimate (1.2) for the whole sample of NUTS regions using Ordinary Least Squares.

Standard errors are calculated clustering observations by NUTS 1 level.11

1.3.1 Basic results

The results from estimating (1.2) are presented in Table 1.3. As a benchmark, we begin

in column (1) of Table 1.3 with a basic raw regression of per capita GDP on temperature

for the whole sample of regions. In accordance with Dell et al. (2009), we identify a

negative relation between economic activity and temperatures, but much more modest

than what these authors find (8.5%). In particular, we observe a negative, significant

relation between temperature and per capita GDP, by which an additional 1◦C is

associated on average with per capita GDP 2.2% smaller. This difference in magnitudes

can be partly attributed to the fact that we are focusing on a sample of highly developed

countries that could possibly accommodate changes in temperatures better than less

developed countries. In fact, these figures are pretty much in accordance with those

obtained by Deryugina and Hsiang (2014), who estimate a decline in productivity of

1.7% following an increase of 1◦C for the United States. In column (2), we simply

replicate the first regression but, this time, robust standard errors are enforced. To

do so, we cluster observations using the immediate upper-level NUTS (NUTS 1 level,

except for Spanish regions, in which NUTS 2 level applies). As it can be observed,

standard errors increase slightly denoting a possible higher correlation within NUTS 1

regions. Robust standard errors will be calculated throughout the rest of specifications.

In column (3), we add some geographic variables to our specification as they are

pretty correlated to weather characteristics. They are, namely, distance to the seaside

and average altitude. The point estimate for the effect of temperature remains quite

stable and features the same order of magnitude. In column (4), precipitations are

incorporated into the regression. Its associated point estimate is slightly positive albeit

not significant —pretty much in accordance with what other studies report— whereas

the rest of estimates remain qualitatively the same. Columns (5) and (6) examine the

relationship between weather conditions and income within countries. In column (5),

we include country fixed effects (country FE) in an attempt to capture idiosyncratic

features of each country. The point estimate of temperature preserves its sign and

magnitude, that is, warmer 1◦C temperatures are linked to a smaller per capita GDP

11NUTS 2 for Spain.
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in an amount of around 3.1% of per capita GDP. These results confirm that the the

sign of the cross-sectional relationship between temperature and income holds within

countries, as well as across countries. The reader should note that these compact bunch

of variables already explain a remarkable 60% of the variation of per capita GDP in

the sample.

Relatively poorer regions are usually associated with lower income. We can find

several examples in the literature illustrating this feature. For instance, in our seminal

reference, Dell et al. (2009), this point is made explicit for the case of some Ameri-

can countries. The rationale behind is that those countries (regions) would have less

resources to adapt to more hostile weather conditions and, hence, would be unable

to decouple their economic activity from the environment. The question then will be

whether this argument is also taking place in poorer regions within highly developed

countries. The last column (6) represents an attempt to testing for the validity of this

hypothesis. In our case, we find qualitatively similar results applied to our sample. In

particular, we find that poor regions are relatively more affected by warmer tempera-

tures in income terms.12 Actually, the effect is highly significant, observing a relation

of 3.8% lower per capita GDP associated with temperatures 1◦C higher. The corre-

sponding figure for rich regions remains significant, though, but halves with respect to

the previous specification, indicating that poor regions are driving most of this effect.

We interpret this as a structural weakness of poor regions to coping with higher tem-

peratures. Interestingly, this feature in our sample takes place inside a group of “first

world” countries.

At this point, some differences can be remarked in the take-away messages resulting

from applying this approach at the country level and those stemming from an analysis

in which the researcher studies regions as separate entities. Indeed, we find some regions

that are more prone to be economically affected by rising temperatures although they

actually belong to well established economies. Not only are poor countries the weakest

link in the climate change process, but also poor regions within rich countries can

suffer the consequences of global warming. As it can be inferred from these results,

the effect of temperatures on poor regions is three times larger than that observed in

relatively more developed regions. On a broader temporal perspective and considering

the benchmark scenario projected by the IPCC envisaging an average increase in global

temperatures of around 2◦C for year 2100,13 this would be associated in our simplified

linear framework with regions being 6% poorer attributed to the sole effect of weather

conditions.

12We define poor regions as the ones that are below the median per capita GDP of the whole sample
13Under the event of a total cut-off of greenhouse gases emissions today.
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One of the most important question in social science concerns the causes of cross-

country differences in economic development and economic growth. Why are some

countries richer than others? Over the years many authors have attempted to respond

to this question more or less successfully. A prominent list of economists spurred by a

seminal article from Acemoglu et al. (2002) affirm that such differences would be mostly

explained by diverse institutional development, leaving no role for geographic variables.

In this specification we treat temperatures as a fixed variable for each region, which

makes testing these alternative hypothesis challenging. But, since all regions within

our sample belong to the European Union and the Euro area, it would be sensible

to state that they share roughly the same institutional framework. Given that, we

are still able to find differences across regions, which sets an argument in favour of

the role of weather as a determinant of income divergence across places. In general,

though, we can accept the role of the state as an umbrella that protects the productive

infrastructure as all our temperature point estimates become more negative once we

control for country-level fixed effects.14

1.3.2 Robustness and Channels

In an attempt to check for the validity of the results obtained in the previous para-

graphs, some exercises have been designed and implemented. In particular, we have

modified the reference year in a window of 5 years above and below the reference year

(2000) and the same qualitative and quantitative results were obtained.15 Another

aspect that could be of interest is to gauge which branch of activity is most influenced

by weather conditions and determine the sign of this relation. With the purpose of

checking this statement, we proceed with the breakdown of per capita GDP in branches

of activity, namely, agriculture, industry and services, and regress each of them on our

control variables. The results are presented in Tables 1.4 through 1.6.

Surprisingly (or not) a positive and quite significant response to higher temperatures

is observed when looking at agricultural output. In particular, an additional 1◦C

is attached to an average increase in agricultural activity ranging from 9% to 13%

depending on the specification. Other authors find a similar result when analysing

the response of agricultural output to a warmer environment. For instance, Deschênes

and Greenstone (2007) find a positive response of warming to the productivity level

of certain crops in the United Sates. Note that this effect is reasonably stable across

regions, regardless their level of income. As one could easily expect, temperatures

14This conclusion will be challenged shortly, as we will measure the strength of the omitted variable
bias in our specification in Section 1.3.3.

15These results can be obtained from the author upon request.



1.3 Long-term effects 29

explain solely more than 8% of the variation of agricultural activity across regions.

Again, the effect of precipitations is limited but eminently positive. The negative

effects of temperature in activity accrued in per capita GDP are essentially due to

industry and services according to our results. This can clearly be seen in Table 1.5

and Table 1.6. It can also be noted in both tables that this effect is exacerbated in

poor regions, which is one of the main features obtained in our benchmark regression.

1.3.3 The role of omitted variables

The cross-section analysis of the relation between income and temperature typically

features the classic omitted variable problem as described in Wooldridge (2002), which

could result in potentially biased estimated coefficients resulting from the omission in

our specification of explanatory variables that can be correlated with our regressors.

In particular, if we collect the set of included variables in our linear regression

model under the vector X, with associated coefficient, β, and denote Z as the vector

of omitted variables in our specification and δ its associated coefficient, our estimation

of β conditional on our set of regressors,

E[β̂ | X] = β + (X ′X)−1X ′Zδ,

will be given by its actual value plus an estimation bias. This bias will depend on the

magnitude and sign of both the correlation of X and Z and the point estimate of Z.

Hsiang (2016) recommends that, since there does not exist any systematic method for

determining whether any key variables are omitted from the estimated equation, the

strategy to correct for this potential bias would amount to saturate the model with as

many variables as possible. The omitted variable problem is manifested in this scenario

through two different channels.

The first channel plays a part when climate change impacts are estimated focusing

on one exogenous weather variable in isolation, say, temperature. Point estimates

could present a bias as long as other weather variables correlated with temperature

(precipitations, for example) are not explicitly included in our specification. As pointed

out in Aufhammer et al. (2013), the sign of the omitted variable bias will depend on the

location under study, with hot areas generally showing negative correlation whereas

positive correlation can be found in more temperate areas. Even areas of positive

and negative correlation can coexist in the case where relatively large countries are

analysed, which is our case. We solve this problem by including both temperatures and

precipitations in our exercise, accompanied by other exogenous geographic variables,

like elevation or distance to the seaside.
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The second source of omitted variable bias is related to the criticism by some

authors, like Acemoglu et al. (2002), Easterly and Levine (2003) or Rodrik et al. (2004),

who claim that cross-country (cross-region) differences in income in modern times are

basically explained by differences in institutional factors inherent to each area, like

institutional quality and governance or the degree of corruption, leaving no role for

geographic or weather variables. This should not concern us if weather variables are

understood as purely exogenous variables, as the omission of these variables would not

distort our estimates. However, if we consider that climate can be correlated with those

factors, we must necessarily control for them.

This poses a problem to our exercise, as a massive number of characteristics de-

scribing institutional development are susceptible to be incorporated in our regression.

A shortcut to including hundreds of variables is finding a synthetic measure of institu-

tional quality that loyally summarises different regional institutional developments.

The European Quality of Government Index (EQI) is the result of novel survey data

on corruption and governance at the regional level within the EU and the first source

of data to date that allows researchers to compare the quality of governments within

and across countries in a multi-country, multi-region context. Surveys are based on

a series of questions trying to cover three different pillars: quality, impartiality and

corruption. The sub-national regions are at the NUTS 1 or NUTS 2 level, depending

on the country. The data is standardized with a mean of zero, and higher scores imply

higher quality of institutions and governance. Two releases of the EQI are available, as

the survey was conducted in first in 2010 and then again in 2013. For 2013, the EQI13

(Charron et al., 2015) contains 206 regions based on a survey that was answered by

85.000 citizen respondents. Basic results of the EQI and its quality pillar are described

in Figure 1.3.

The EQI’s spatial resolution is slightly different from that adopted in our study. In

order to match both, we have used EQI’s NUTS2 data for Spain, Italy and France and

EQI’s NUTS1 data for Germany and UK. Then, we estimate the following equation

log(yi) = αi+β1poori+β2tempi+β3tempi×poori+β4precipi+β5EQIi+X
′

iγ+εi, (1.3)

adopting the EQI13 index as our benchmark measure of regional institutional quality.

Since the correlation of temperatures and the EQI is negative (around -0.6) and the

effect of institutional reputation on aggregate income is allegedly positive, ex ante

our original point estimates of temperatures obtained by estimating equation (1.2) are

expected to be downward biased.

The EQI we use is constructed and released in 2013. Meanwhile, the year of ref-
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erence for all our estimations has been year 2000 throughout the paper. It seems

reasonable to think that this index describes the contemporaneous quality of institu-

tions, not that of year 2000. Accordingly, we update our year of reference to 2011 (the

last year a balanced data set is available) to accommodate the previous fact.16

Estimated coefficients and their standard errors can be found in Table 1.7. In col-

umn (1), a raw regression of income on temperatures and precipitations that replicates

for year 2011 the regressions featured in Table 1.3 can be observed. This estimation

yields already familiar results of around 3% less per capita GDP per additional degree

in poor regions. In column (2) we try to attenuate the possible omitted variable bias

resulting from not controlling for institutional environment by including the regional

EQI13 index. As it can be observed, the overall negative effect of temperatures on

income decreases moderately and becomes both negligible and non-significant. The

expected downward bias of our original temperature point estimates is confirmed at

this stage and hence the overestimation of the raw effect of temperatures on aggregate

per capita GDP. The coefficient associated with the EQI index is positive and signifi-

cant but relatively small. However, we find that the additional effect for poorer regions

remains significant and quantitatively very similar to that of the previous specifica-

tion, demonstrating its independent nature and confirming our main result in previous

regressions. Though, as a consequence of the general effect of temperature on income

decreasing its magnitude, the overall temperature effect in relatively poorer regions

diminishes if compared with column (1), with an additional degree being associated

with a level of per capita GDP 1.2% lower in those regions, even when the institutional

role is accounted for.

Then, column (3) represents a robustness exercise to confirm the findings in the

previous column. In this specification, the EQI13 index, that overall encompasses

three pillars (quality of institutions, impartiality and corruption) is replaced by an

indicator addressing only institutional quality issues (we call it EQI13q) in an attempt

to isolate the degree of institutional development as a explanatory factor of aggregate

income. The message behind our new specification is qualitatively equivalent to that

delivered when we use the standard EQI13 index. Finally, column (4) reproduces the

previous regression taking year 2012 as the reference year. Even though some regions

are not available this year, the additional effect for poor regions remain stable at around

1.5% less per capita GDP per additional degree but the overall effect for these regions

becomes not discernible from zero. The effect in rich regions is now positive but not

significant.

16The reader may now observe that point estimates can differ slightly from those presented in
previous sections.
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1.4 The effects of weather fluctuations in aggregate

income

In this section, we are going to make use of the longitudinal dimension of our dataset

in order to comprehend the dynamic effects of weather variation in economic activity.

Our main identification strategy uses year-to-year fluctuations in temperature and

precipitation to identify changes in economic performance. We can then use panel

data econometric techniques to inform whether temperature impacts regional growth

rates or simply the level of income.

Although our time span is not as large as the one used by Dell et al. (2012), we still

fulfil a minimum requirement of having at least T ≥ 20 for all the 169 regions observed,

which is a pre-requisite to accept the validity of these results. Looking at Table 1.8, we

can document the extent of temperature and precipitation fluctuations in our sample.

It can be easily seen that precipitations are quite more volatile (almost double) than

temperatures and that, along our sample, it can hardly be seen a deviation of more than

1◦C of average values once we control for year or regional effects. Also, the variability

observed in average temperatures is substantial as evidenced by looking at the decadal

variation in average temperatures shown in Figure 1.4, where a discernible increase in

temperatures is observed in almost all regions for the period studied.

The suggested empirical framework for this section follows the derivation in Bond

et al. (2010). Let us consider the simple economy17

Yit = eβTitAitLit, (1.4)

where total output in region i at time t is determined by the total amount of population

L in that region, whose productivity is affected by the general level of technology A

and the effect of an exogenous weather variable, denoted by T . Let us assume also that

technology grows each period at a constant region-specific rate, g, but is also affected

by the environment, i.e.

∆Ait
Ait

= gi + γTit. (1.5)

Taking logs in (1.4) and differencing with respect to time, we have

17This reasoning can be extended to more general dynamic panel models that incorporate richer lag
structures and lagged dependent variables.
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d

dt
log(Yit) =

d

dt
βTit +

d

dt
log(Ait) +

d

dt
log(Lit)

git = β(Tit − Tit−1) + gi + γTit.

Hence,

git = gi + (β + γ)Tit − βTit−1. (1.6)

This is our dynamic growth equation, where git is the growth rate of output.18

The level effects of weather shocks on output, which come from equation (1.4), appear

through β. The growth effects of weather shocks, which come from (1.5), appear

through γ.

The growth equation (1.6) allows separate identification of level effects and growth

effects through the examination of transitory weather shocks. In particular, both effects

influence the growth rate in the initial period of the shock. The difference is that the

level effect eventually reverses itself as the weather returns to its prior state. By

contrast, the growth effect appears during the weather shock and is not reversed. The

growth effect is identified in (1.6) as the summation of the temperature effects over

time. This reasoning will extend to scenarios where temperature effects play out more

slowly. Accordingly, in order to capture the whole dynamic effect of temperatures on

income we will estimate panel regressions of the form

git = θi + θCt +
J∑
j=0

ρjTit−j + εit, (1.7)

where θi are region fixed effects, θCt are country-time fixed effects, εit is an error term

clustered simultaneously by region and region-year (following the two-way clustering

of Cameron et al., 2011), and Tit is a vector of annual average temperature with up to

J lags included.

1.4.1 Main Results

In the previous section we have identified that hotter regions in Europe are also the

poorer, with a subtle but significant relationship of around 3% less output per addi-

tional degree. We have also documented that the channels through which this perni-

cious effects are manifested are the industrial and services branches, not the agricul-

18Similarly to Section 1.3, we will work with variables in per capita terms to avoid weighting
observations by the economic size of each region.
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tural, which benefits from warmer conditions. Once said that, it seems reasonable to

measure the extent to which European regions are susceptible from suffering the conse-

quences of increasingly warmer temperatures in response to climate change. To do so,

we will look at the potential of short-term weather variation to alter the year-to-year

economic performance of regions, that is, their immediate ability to grow.

As mentioned, we will identify the short-term impact of weather variation by es-

timating equation (1.7) applied to our sample.19 In a first exercise we focus on the

contemporaneous effect of weather on economic growth by switching off the lag struc-

ture of temperatures (J = 0). Column (1) of Table 1.9 shows a positive and statistically

significant relationship between temperature fluctuations and growth on average across

all regions. Note, though, that this is a very simplistic regression in which we relate

growth solely with current temperatures. In column (2), once when we account for

country fixed effects, the estimate attached to temperatures changes its sign denot-

ing a negative impact of warming conditions on growth. In particular, an increase of

average temperatures of 1◦C today hampers the growth potential of regions almost

by 0.065 pp, which turns out to be of a modest nature but, if that effect results to

be permanent, once accumulated, yields not negligible figures.20 In a world with no

adaptation, and assuming all countries being equal and growing at a stable constant

rate (+2%), our panel estimates imply that a 1◦C permanent shock in a certain coun-

try would solely explain the cross-sectional correlation between temperature and per

capita income after 25 years. In practice, however, adaptation to climate change may

mitigate these effects substantially.

In their paper on the relation between economic growth and weather conditions,

Dell et al. (2012) claim that poor countries are more prone to suffering the consequences

of an increase of temperatures. We are keen on testing their results in our sample by

looking at sample of developed economies. Hence, in column (3), we interact tem-

perature with a dummy for a country being “poor”, defined as having below-median

per capita GDP in a year of reference.21 The coefficient on the interaction between

the “poor” dummy and temperature is negative and statistically significant, indicating

substantial heterogeneity between poor and rich regions. As shown in the last row of

the table (which reports the sum of the main effect of temperature and its interaction

19Growth rates of per capita GDP are proxied via logarithmic differences as follows: git = 100 ∗
[log(pcGDPit)− log(pcGDPit−1)]

20For instance, the level effect of this result is of almost 2% in 25 years time, nearly 4% in 50 years
time and of 7.5% in 100 years. Under the IPCC’s scenario of an average increase of temperatures
of 2◦C, that would cost to European regions two-digit figures (more than 11% assuming a further
increase in temperatures in 50 years) in terms of per capita income.

21Our year of reference will be 1995. Similar results are obtained when this year of reference is
modified.
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with the poor dummy), the net effect of a 1◦C rise in temperature is to decrease growth

rates in poor regions by 0.086 pp. Put another way, since the standard deviation of

annual temperature once country fixed effects, region x year, and poor country x year

fixed effects are removed is 0.20 degrees (see Table 1.8 for more details), the estimates

in Table 1.9 imply that a one standard deviation increase in annual temperature is as-

sociated with a reduction in growth of about 0.017 pp. A two-standard deviation yearly

increase in temperatures (0.4◦C) would imply lower economic growth in an amount of

0.04 pp. Ours and the results from Colacito et al. (2014) are the first to document

a negative and statistically significant relationship between rising temperatures and

economic growth in a developed economy.

Lastly, in column (4), we incorporate precipitations to our empirical model. We

decide to include it only in the last specification as this variable proved to have an am-

biguous effect in the previous section. No matter what, it is always advisable to control

for rainfall effects in order to cross-check the results obtained in the previous column.

As it can be observed, the point estimates remain very stable, both qualitatively and

quantitatively. We have to remark now that the point estimate of temperatures for rich

regions is now not statistically significant. In other words, we cannot reject the null

hypothesis of this value being equal to zero, which confirms the findings obtained in the

cross-section dimension (see Table 1.3), and those of Dell et al. (2012), that is, in rich

regions (countries) typically a positive but rarely statistically significant temperature

relation is found.

In order to disentangle the channels through which the negative short-term effect of

weather fluctuations in the economy spreads, we repeat the above exercise substituting

the dependent variable by its branches’ equivalent, namely, agriculture, industry and

services. Those results are presented in Tables 1.10 through 1.12. We identify a very

negative, sound impact of increasing temperature in agricultural aggregated output of

almost 0.23 pp less growth per additional degree in poor regions. Again, the effect is

exacerbated in poor regions as opposed to rich regions, in which the decay in growth

represents an equivalent of nearly 0.14 pp. Moving to the industrial aggregate income,

we cannot identify any discernible effect of weather variables in activity. Up to some

extent, this sector represents ex ante a branch traditionally regarded to be less affected

by environmental conditions. On the other hand, we find a positive significant impact

of temperature on services only in poor regions. This result could be attached to

the plausible beneficial effects of warming to the tourism sector. In any respect, our

conclusions do not differ much from that obtained by Dell et al. (2012), highlighting

common places between European countries and the rest of the world. Note also that

these exercises are reduced-form, and therefore do not identify the possibly complex
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structural relationships between temperature, growth, and other outcomes.

A set of robustness exercises have been carried out in order to test for the validity

of our results. First, since income data from Italian regions is only available from year

1995, including Italy in the overall exercise comes at the cost of reducing substantially

the panel dimension so as to have a balanced panel of data. This is why we have

repeated the analysis removing Italian regions. Without this country we can enlarge

our temporal dimension back to 1991. However, quantitative and qualitative results

are obtained when running regressions similar to those described by equation (1.7).

We also check the robustness of the results by including lags of the regressors into

the benchmark specification. Accordingly, we consider more flexible models with up

to 5 lags of temperature and precipitations. Table 1.13 presents the results from esti-

mating (1.7) with no lags, 1 lag, 3 lags and 5 lags. All temperature and precipitations

are interacted with poor region dummies. We also report the cumulative effect of tem-

perature for poor regions. As it can be observed in the last row of Table 1.13, the

effect remains stable and statistically significant across specifications at around -0.07

to -0.09 pp. However, from 3 lags onwards the cumulative effect dilutes, which can be

plausibly attributed to the still scarce longitudinal dimension of our dataset. Surely,

a cross-check of this exercise should be attempted once we are in possession of a more

prolonged dataset. By comparing columns (1-4) to (5-8), we confirm that the effect

of precipitations is again very subtle as the point estimates of temperatures in poor

regions remain similar regardless we control or not for precipitations.

1.5 Bridging short- and long-term results: Adap-

tation and convergence

In possession of the previous results (long- and short-term relationship), we will try

to fill the gap between the two magnitudes by making use of a simple framework de-

rived in Dell et al. (2009) by which, we will attempt to disentangle these differences

as the response to the action of two specific mechanisms, namely, convergence and

adaptation. First, convergence forces may pull lagging regions and make them catch

up with their neighbours by offsetting temperature effects, so that it limits the cross-

sectional income differences that can be sustained. Second, over longer periods, regions

may adapt to their changing climate. The panel growth estimates reflect responses to

climate shocks. To the extent that individuals adjust their behaviour to permanent

temperature changes, e.g., by switching to more resilient crops, industries, and tech-

nologies. Adaptation is a concept particularly relevant in the climate change literature
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and is one of the main focus of the IPCC in terms of alleviating the pernicious effects

of climate change. This simple exercise will give us a flavour of the importance of the

adapting behaviour of individuals to cope with climate change.

All in all, we have found a permanent relationship between temperatures and the

level of GDP of about 3% in poor regions whereas the short-term effect of temperatures

on growth represent a decline of 0.086 pp. To reconcile the long-run cross-sectional re-

lationships documented in Section 1.3 with the short-run growth effects of temperature

estimated in Section 1.4, we consider the above mentioned mechanisms: convergence

and adaptation. With help of a very naive but illustrative exercise, we will bring for-

ward these two important economic and climatic concepts, about which few empirical

estimates are available.

Following the derivations in Appendix 1.B, we have that in the very long-run, the

cross-sectional relation between income and temperature is described by the following

inequality

dE[logyi]

dT̄i
=
γ + ρ

ϕ
, (1.8)

where γ captures the short-run effect of temperature shocks on growth, as identified

in (1.7). The parameter ρ captures the degree of adaptation over the long-run to

average temperature levels, potentially offsetting the short-run temperature effects.

Meanwhile, the parameter ϕ ∈ (0, 1) captures the rate of convergence. Equation (1.8)

is an inequality with four unknowns, three of which we have estimates for whereas the

fourth will be imported from estimates in the literature. The left-hand side of (1.8) is

the cross-sectional regression parameter in the regression of income on temperature, i.e.,

β = −0.022 (see Table 1.3). As noted in Section 1.4, the short-run growth coefficient

is approximately γ = −0.0058.

By means of setting ρ = 0 in (1.8), we are able to turn off the adaptation chan-

nel in order to isolate the effect of convergence and analyse its implications. In this

scenario, reconciling the short-run and long-run temperature effects is achieved when

ϕ = γ
β
. To do so, we require ϕ = −0.0058

−0.022
= 0.2636, which is relatively too high if

compared with other values of convergence offered in the literature. For example, in

developed countries within-country convergence coefficients estimates range approxi-

mately between 0.02 and 0.03. These results point in the direction of adaptation as the

key factor to bridge long-term and short-term results. Over the long run, areas may

adapt to difficult geographic conditions. Adaptation in this context would range from

the modification of the nature of the inputs used to produce to technological changes

or changes in the intensity in which production factors are used.

In a second exercise, we let adaptation forces play. Accordingly, we estimate the
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value of ρ using our findings for β and γ and imposing a specific convergence rate, ϕ.

If we rearrange equation (1.8), we have that ρ = βϕ − γ. If we let the upper-bound

cross-country convergence estimate ϕ = 0.05, we obtain ρ = 0.0047 so that 81% of

the short-run growth effect is offset in the long-run, so that the long-run growth rate

effect of being 1◦C warmer is -0.0011, i.e., 0.1 pp per year. Note, however, that this

value depends critically on the convergence rate that we are imposing. Thus, we have

to adopt these values with caution.

1.6 Conclusion

Climate change is expected to increase average global temperatures inexorably in the

upcoming decades, which urges the need for reliable measures of how our economies

are exposed to environmental variables and how their changing nature affect economic

performance. In a first exercise, Dell et al. (2009) successfully documented a neg-

ative relation between temperatures and income for poor countries working with a

cross-country sample of sub-national data of 12 countries in the Americas in which

less developed countries were relatively oversampled. In particular they found national

income falling 8.5% per degree Celsius. On a separate study, the same authors studied

a panel formed by more than 150 countries around the world by looking at the dynam-

ics of the relation of temperatures and income along the period 1950-2003 finding a

negative, significant effect of temperatures in economic growth only for poor countries

of around -1.1 pp per additional degree. Two straight forward messages derive from

those results: first, the increase in temperatures that we are witnessing due to global

warming will be benevolent or, at least, will not imply harmful consequences for rich

countries/regions. Second, for the sake of comparison and completion, it would be

worth reproducing both exercises for a same set of countries (or regions). This study

addresses both arguments.

To do so, we have constructed a dataset covering income and meteorological vari-

ables at the NUTS level for the five largest European countries. This dataset show

some features that make it unique and are worth mentioning: first, all weather data

correspond to actual observed weather stations matched with the NUTS unit of ref-

erence. In this way, we avoid the use of gridded weather data, which could result in

biased interpretation of the results. Second, and equally important, the fact of resort-

ing to the NUTS level present further advantages, as it enables us to account for the

weather heterogeneity within country. Also, it is the level at which regional policies,

like environmental, are formulated. Hence, our findings could help to formulate more

efficient environmental policies.
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In the cross-section (long run) analysis, we find qualitatively similar results to Dell

et al. (2009). Specifically, we distinguish a negative, significant, tempered relation be-

tween temperatures and aggregate income in our sample. More precisely, an additional

degree is attached to lower personal income in 1.6-2.2%. This negative relationship is

amplified for poor regions. Other authors, like Deryugina and Hsiang (2014) find simi-

lar results for the United States. In general, and in accordance with Dell et al. (2009),

the effect of precipitations is diffuse but eminently positive, although not significant.

Other geographic variables, such as elevation and distance to the sea show residual

importance. The role of the state as a protective umbrella is made explicit as all our

temperature point estimates become more negative once we control for country-level

fixed effects. We can derive from these results that, unlike Dell et al. (2009) claim,

well-developed economies are not fully decoupled from environmental conditions and

would probably be harmed if temperatures are to increase unless some adaptation pro-

cess takes place. We also try to attenuate the omitted variable bias, very common in

this approach. Our results remain fairly stable for poor regions after controlling for

regional institutional quality and reputation through the EQI index.

By exploiting the longitudinal dimension of our dataset, we now have the chance

to benefit from the stochastic variation in weather variables and try to estimate their

effect on the short-term dynamics of income. This is covered in Section 1.4. Overall,

we find that an increase of average temperatures of 1 degree today hampers the growth

potential of regions almost by 0.065 pp, which in accumulated terms represents an

overall effect in the long-run slightly larger than the one estimated in the previous

section. As of poor regions, the net effect of a 1◦C rise in temperature is to decrease

growth rates in poor regions by 0.084 pp, where again poor regions are a bit more

penalised than rich regions. Our results, together with those of Colacito et al. (2014) are

the first to document a negative, significant relationship between rising temperatures

and economic growth in the context of developed economies. Once again, we find

no relevant statistical evidence about the effect of precipitations in the short-term

economic performance of regions. These findings go in parallel with those of other

authors in the literature. Surprisingly, and opposed to the previous section, we find a

robust, negative effect of temperatures and precipitations in the agricultural output,

as a measure of the adverse effects of sudden and abrupt deviations of average weather

values, namely, floods, droughts or frost damages, on the performance of crops.

Using a sample of European regions, the results in this paper unveil new evidence

in favour of how ongoing rising temperatures harm both the level and the ability to

grow of developed economies. In accordance with other authors, we also show how this

negative effect is exacerbated in relatively poorer regions. In light of this, policy makers
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should account for regional heterogeneity when environmental policies are formulated

at a large scale. This heterogeneity should also be borne in mind when the interactions

between climate and economies are modelled (for instance, in Integrated Assessment

Models of climate change). Since climate change is usually accompanied by extreme

weather events, the existence of weather non-linear effects in our economies should be

tested. At the same time, micro evidence suggest that fundamental productive units

exhibit highly non-linear responses to local temperatures, as suggested in Graff Zivin

and Neidell (2014). This suggests a new avenue of research that will be covered in

future projects.
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1.A Tables and Figures

Table 1.1: Descriptive statistics of NUTS regions

country
NUTS 2 NUTS 3

area population regions area population regions

France 24340 2455 22 6328 638 100
Germany 9398 2165 39 867 200 412

Italy 14352 2829 22 2740 541 110
Spain 26631 2362 18 8576 761 51

United Kingdom 6574 1648 37 1750 438 139

Notes: Average surface is expressed in km2. Population is measured in thousands. Surface and
population figures stem from year 2007. Source: Eurostat.

(a) per capita GDP (e) (b) Total sun hours (Not available for Italy)

Figure 1.1: Accounting for regional heterogeneity in Europe. Year 2000
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(a) Temperatures (oC) (b) Precipitations (mm/year)

Figure 1.2: Weather patterns in some regions of Europe. Year 2000

Table 1.2: Data sources

country economic period weather period

France INSEE 1990-2012 Meteo France 1949-2013
Germany DESTATIS 1992-2013 DWD 1900-2014

Italy ISTAT 1995-2012 METEOAM 1995-2013
Spain INE 1980-2013 AEMET 1948-2014

United Kingdom ONS 1995-2012 Met Office (UKCP09) 1981-2012

Notes: This table reflects the total availability of data. Note that not all data, especially the
meteorological, intervene in this study. Sources: INSEE, Institut national de la statistique et des
études économiques; DESTATIS, Statistiches Bundesamt ; ISTAT, Instituto Nazionale di Statis-
tica; INE, Instituo Nacional de Estad́ıstica; ONS, Office for National Statistics; Meteo France;
DWD, Deutscher Wetterdienst ; METEOAM, Servizio Meteorologico dell’Aeronautica Militare Ital-
iana; AEMET, Agencia Española de Meteoroloǵıa; UKCP09, UK Met Office Climate Projections.
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(a) The EQI index. Year 2013. (b) The EQI index. Quality pillar. Year 2013.

Figure 1.3: The EQI index. Accounting for institutional reputation across European
regions.

Figure 1.4: Average temperature variation. Decade 2000 against decade 1990 (oC)
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Table 1.3: Long-term relationship. All Regions

(1) (2) (3) (4) (5) (6)

temperature -0.022∗∗∗ -0.022∗∗∗ -0.023∗∗∗ -0.021∗∗ -0.031∗∗∗ -0.016∗

(0.006) (0.007) (0.008) (0.010) (0.009) (0.009)

temperature × poor region -0.022∗∗∗

(0.004)

precipitation 0.002 0.005 0.000
(0.007) (0.005) (0.003)

geographic variables No No Yes Yes Yes Yes

country FE No No No No Yes Yes

N 168 168 168 168 168 168
R2 0.085 0.085 0.196 0.197 0.599 0.712
temp. effect on poor regions -0.038∗∗∗

(0.010)

Notes: In all the regressions, the dependent variable is the logarithm of the regional per capita GDP. Under
Geographic variables we find elevation and distance to coast. The reference year is 2000. Column (1) depicts a
simple OLS regression of the dependent variable on temperature. Column (2) replicates column (1) but calculates
robust standard errors by NUTS 1 level (NUTS 2 for the case of Spain). Column (3) adds a set of geographic
variables as controls. Column (4) incorporates precipitations. Columns (5) and (6) include country fixed effects.
Column (6) incorporates the interaction effect of temperature in poor regions. * denotes significance at 10 pct.,
** at 5 pct., and *** at 1 pct. level.
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Table 1.4: Agriculture. Long-term relationship. All Regions

(1) (2) (3) (4) (5) (6)

temperature 0.099∗∗∗ 0.099∗∗∗ 0.114∗∗∗ 0.126∗∗∗ 0.099 0.087
(0.026) (0.033) (0.035) (0.038) (0.073) (0.076)

temperature × poor region 0.017∗

(0.020)

precipitation 0.017 0.031 0.035
(0.032) (0.054) (0.056)

geographic variables No No Yes Yes Yes Yes

country FE No No No No Yes Yes

N 168 168 168 168 168 168
R2 0.079 0.079 0.096 0.099 0.435 0.438
temp. effect on poor regions 0.075

(0.168)

Notes: In all the regressions, the dependent variable is the logarithm of the regional agricultural per capita
GDP. Under Geographic variables we find elevation and distance to coast. The reference year is 2000. Column
(1) depicts a simple OLS regression of the dependent variable on temperature. Column (2) replicates column
(1) but calculates robust standard errors by NUTS 1 level (NUTS 2 for the case of Spain). Column (3) adds a
set of geographic variables as controls. Column (4) incorporates precipitations. Columns (5) and (6) include
country fixed effects. Column (6) incorporates the interaction effect of temperature in poor regions. * denotes
significance at 10 pct., ** at 5 pct., and *** at 1 pct. level.
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Table 1.5: Industry. Long-term relationship. All Regions

(1) (2) (3) (4) (5) (6)

temperature -0.127∗∗∗ -0.127∗∗∗ -0.124∗∗∗ -0.111∗∗∗ -0.127∗ -0.106
(0.033) (0.048) (0.045) (0.055) (0.074) (0.074)

temperature × poor region -0.031∗

(0.017)

precipitation 0.020 0.025 0.018
(0.046) (0.080) (0.081)

geographic variables No No Yes Yes Yes Yes

country FE No No No No Yes Yes

N 168 168 168 168 168 168
R2 0.082 0.082 0.345 0.347 0.632 0.638
temp. effect on poor regions -0.137∗∗

(0.076)

Notes: In all the regressions, the dependent variable is the logarithm of the regional industrial per capita GDP.
Under Geographic variables we find elevation and distance to coast. The reference year is 2000. Column (1)
depicts a simple OLS regression of the dependent variable on temperature. Column (2) replicates column (1)
but calculates robust standard errors by NUTS 1 level (NUTS 2 for the case of Spain). Column (3) adds a
set of geographic variables as controls. Column (4) incorporates precipitations. Columns (5) and (6) include
country fixed effects. Column (6) incorporates the interaction effect of temperature in poor regions. * denotes
significance at 10 pct., ** at 5 pct., and *** at 1 pct. level.
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Table 1.6: Services. Long-term relationship. All Regions

(1) (2) (3) (4) (5) (6)

temperature -0.052∗ -0.052∗ -0.066∗ -0.056 -0.007 0.016
(0.029) (0.034) (0.036) (0.047) (0.069) (0.065)

temperature × poor region -0.033∗

(0.019)

precipitation 0.015 0.044 0.037
(0.040) (0.062) (0.062)

geographic variables No No Yes Yes Yes Yes

country FE No No No No Yes Yes

N 168 168 168 168 168 168
R2 0.018 0.018 0.312 0.314 0.617 0.627
temp. effect on poor regions -0.018

(0.071)

Notes: In all the regressions, the dependent variable is the logarithm of the regional services per
capita GDP. Under Geographic variables we find elevation and distance to coast. The reference year is
2000. Column (1) depicts a simple OLS regression of the dependent variable on temperature. Column
(2) replicates column (1) but calculates robust standard errors by NUTS 1 level (NUTS 2 for the
case of Spain). Column (3) adds a set of geographic variables as controls. Column (4) incorporates
precipitations. Columns (5) and (6) include country fixed effects. Column (6) incorporates the
interaction effect of temperature in poor regions. * denotes significance at 10 pct., ** at 5 pct., and
*** at 1 pct. level.
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Table 1.7: Long-term relationship. The role of omitted variables.

(1) (2) (3) (4)

temperature -0.014∗ 0.002 -0.002 0.019
(0.007) (0.010) (0.010) (0.020)

temperature × poor region -0.015∗∗∗ -0.014∗∗∗ -0.015∗∗∗ -0.013∗∗∗

(0.002) (0.002) (0.002) (0.003)

precipitation -0.012∗∗ -0.006 -0.008∗ 0.001
(0.005) (0.005) (0.004) (0.006)

EQI 0.003∗∗ 0.050 0.060
(0.001) (0.032) (0.036)

geographic variables Yes Yes Yes Yes

country FE Yes Yes Yes Yes

N 144 144 144 57
R2 0.446 0.453 0.451 0.664
temp. effect on poor regions -0.029∗∗∗ -0.012∗ -0.016∗ 0.006

(0.007) (0.006) (0.011) (0.020)

Notes: In all the regressions, the dependent variable is the logarithm of the regional per
capita GDP. Under Geographic variables we find elevation and distance to coast. The
reference year is 2011 in all the columns, except the last one (2012). Column (1) depicts
an OLS regression of the dependent variable on temperature and precipitations. Column
(2) incorporates EQI13 index as a control variable. Column (3) is identical to (2), but
uses EQI13q, the quality pillar component of EQI13. Column (4) reproduces column (3)
taking year 2012 as reference. * denotes significance at 10 pct., ** at 5 pct., and *** at
1 pct. level.

Table 1.8: Observed temperature and precipitation variation (1990-2012)

Proportion of Nuts-years with temperature (...)◦C above/below total mean temperature

0.2 0.4 0.6 0.8 1 1.2

Raw data 0.721 0.463 0.293 0.176 0.104 0.055

After removing Nuts-year fixed effects 0.366 0.122 0.048 0.022 0.012 0.007

Proportion of Nuts-years with precipitations (...)∗100mm above/below total mean precipitations

0.5 1 1.5 2 2.5 3

Raw data 0.705 0.445 0.256 0.145 0.078 0.049

After removing Nuts-year fixed effects 0.666 0.392 0.215 0.113 0.067 0.043

Notes: NUTS fixed effects are obtained at the NUTS 1 level in regions from Germany, United
Kingdom, France and Italy and at the NUTS 2 level in Spanish regions.
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Table 1.9: Short-term relationship. All Regions

(1) (2) (3) (4)

temperature 0.178∗∗ -0.064∗∗∗ -0.034∗ -0.022
(0.038) (0.023) (0.019) (0.017)

temperature × poor region -0.052∗∗ -0.058∗∗

(0.026) (0.026)

precipitation 0.036
(0.028)

country FE No Yes Yes Yes

N 3246 3246 3246 3241
R2 0.029 0.469 0.469 0.470
temp. effect on poor regions -0.086∗∗∗ -0.080∗∗∗

(0.029) (0.029)

Notes: In all the regressions, the dependent variable is the year on year growth rate
the regional per capita GDP. Column (1) describes a simple OLS regression of the
dependent variable on temperature. Column (2) replicates column (1) but includes
country FE. Column (3) incorporates the interaction effect of temperature in poor
regions. Column (4) incorporates precipitations. * denotes significance at 10 pct., **
at 5 pct., and *** at 1 pct. level.

Table 1.10: Agriculture. Short-term relationship. All Regions

(1) (2) (3) (4)

temperature 0.202∗∗ -0.152∗∗ -0.093 -0.135∗∗

(0.078) (0.060) (0.070) (0.067)

temperature × poor region -0.104 -0.095
(0.105) (0.102)

precipitation -0.158∗∗

(0.062)

country FE No Yes Yes Yes

N 3282 3282 3282 3277
R2 0.001 0.400 0.400 0.401
temp. effect on poor regions -0.196∗∗∗ -0.229∗∗∗

(0.084) (0.084)

Notes: * denotes significance at 10 pct., ** at 5 pct., and *** at 1 pct. level.
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Table 1.11: Industry. Short-term relationship. All Regions

(1) (2) (3) (4)

temperature 0.275∗∗∗ -0.065 -0.056 -0.055
(0.055) (0.043) (0.050) (0.049)

temperature × poor region -0.015 -0.020
(0.069) (0.069)

precipitation -0.010
(0.033)

country FE No Yes Yes Yes

N 3282 3282 3282 3277
R2 0.017 0.338 0.338 0.337
temp. effect on poor regions -0.071 -0.075

(0.057) (0.060)

Notes: * denotes significance at 10 pct., ** at 5 pct., and *** at 1 pct. level.

Table 1.12: Services. Short-term relationship. All Regions

(1) (2) (3) (4)

temperature 0.438∗∗∗ 0.066∗∗ 0.025 0.024
(0.062) (0.028) (0.026) (0.028)

temperature × poor region 0.072∗∗ -0.074∗∗

(0.030) (0.030)

precipitation 0.002
(0.016)

country FE No Yes Yes Yes

N 3282 3282 3282 3277
R2 0.065 0.765 0.765 0.765
temp. effect on poor regions 0.097∗∗∗ 0.098∗∗∗

(0.026) (0.027)

Notes: * denotes significance at 10 pct., ** at 5 pct., and *** at 1 pct. level.
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1.B Analytics of Adaptation and Convergence

For the sake of clarity, we reproduce here the derivations of Dell et al. (2009) aimed at

bridging the results from the long- and short-term approaches to studying the relation

between weather and aggregate income. Consider the growth specification

d log yi(t)

dt
= g + ρT̄i + γTi(t) + ϕ(log y∗(t)− log yi(t)) for t ≥ 0, (1.9)

where log yi(t) is the log per capita income in region i at time t, Ti(t) is the temperature

in that area, T̄i is the (long-term) average temperature level in region i, and log yt(t)

is the relevant frontier level of income to which the region converges. The parameter γ

captures the short-run effect of temperature shocks on growth, as would be identified in

a panel specification, as the one described in equation (1.7). The parameter ρ captures

the degree of adaptation over the long-run to average temperature levels, potentially

offsetting the short-run temperature effects. Meanwhile, the parameter ϕ ∈ (0, 1)

captures the rate of convergence. We further assume that all regions start, at time

zero, with the same level of per capita income, log yi0 = c for all i. Note that since

(1.9) applies to all regions, including region *, then

E[log y∗t] = c+ (g + (γ + ρ)T̄∗)t.

Here we provide a formal derivation of equation (1.8), which is the integrated form

of (1.9). First, we observe from (1.9) that

d log y∗(t)

dt
= g + ρT̄∗ + γT∗(t).

Next, define a variable ŷ(t) = log yi(t)− log y∗(t), and rewrite (1.9) as

dŷ(t)

dt
=
d(log yi(t)− log y∗(t))

dt
= ρ(T̄i − T̄∗) + γ(Ti(τ)− T∗(τ)) + ϕŷ(t).

If we integrate the above expression once, we find

ŷ(t) = bt+ γ

∫ t

0

h(τ) dτ − ϕ
∫ t

0

ŷ(τ) dτ,

where b = ρ(T̄i− T̄∗) and h(τ) = Ti(τ)−T∗(τ) (which is stochastic). Since this is linear

we can take expectations and change the order of integration, producing
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E[ŷ(t)] = bt+ γ

∫ t

0

E[h(τ)] dτ − ϕ
∫ t

0

E[ŷ(τ)] dτ.

Noting that E[h(τ)] = T̄i − T̄∗, this integrated differential equation can be written

as

E[ŷ(t)] = mt− ϕ
∫ t

0

E[ŷ(τ)] dτ, (1.10)

where m = (γ + ρ)(T̄i − T̄∗). Equation (1.10) can be solved by repeated substitution

of E[ŷ(t)]. In particular, substituting once provides

E[ŷ(t)] = mt− ϕ
∫ t

0

(mτ − ϕ
∫ τ

0

E[y(τ ′)] dτ ′) dτ = mt− ϕmt2

2
− ϕ2

∫ t

0

∫ τ

0

E[y(τ ′)] dτ ′ dτ.

With an infinite set of substitutions and integrating all terms in m we have

E[ŷ(t)] = m
∞∑
j=0

(−1)jϕj
tj+1

(j + 1)!
+ lim

n→∞
ϕn
∫ t

0

∫ τ

0

∫ τ ′

0

· · ·
∫ τ ′{n}

0

E[ŷ(τ
′{n})] dτ

′{n} . . . dτ
′
dτ .

The second term on the right hand side limits to zero. This follows because (i)

ϕ < 1, and (ii) E[ŷ(τ
′{n})] < c where c is a positive definite constant. The limit is thus

less than limn→∞ ϕ
n cn

n!
= 0.

The integrated form can therefore be written

E[ŷ(t)] =
m

ϕ

∞∑
j=1

(−1)j+1ϕj
tj

j!
,

which is equivalently recognised as

E[ŷ(t)] =
m

ϕ
(1− e−ϕt).

Recalling the definitions of ŷ(t) and m, we have

E[log yi(t)− log y∗(t)] =
γ + ρ

ϕ
(T̄i − T̄∗)(1− e−ϕt), (1.11)

which is equation (1.8) in the text once we set t→∞ (long-run).





chapter 2

A dynamic programming

Integrated Assessment Model of

Climate Change with adaptation

2.1 Introduction

As widely stated by the Intergovernmental Panel on Climate Change (IPCC), adapta-

tion plays a vital role as a means of dealing with the risks that climate change poses.

Adaptation to climate change is a broad concept that can be understood as the adjust-

ment in natural or human systems in response to actual or expected climatic stimuli or

their effects, which moderates the damages or exploit beneficial opportunities. Adap-

tation measures to combat climate change entail both benefits and costs. The overall

impact of an adaptation measure comes from deducting costs of planning, preparing

for, facilitating, and implementing that measure from the avoided damage costs or the

accrued benefits following its adoption and implementation. Examples of adaptation

are the building of dykes, the changing of crop types, and vaccinations.1

The necessity of increasing adaptation-based strategies as complements of mitiga-

tion measures (reduction of CO2 emissions) has been profoundly emphasized in the

recently delivered IPCC’s 5th Assessment Report (AR) (IPCC, 2013), where a great

deal of attention has been devoted to the forces driving adaptation to climate change

as much as to the various impacts that adaptation to climate change may have (IPCC,

2014a,b). The results of mitigation investment are constrained by climatic inertia and

the slow workings of the carbon/greenhouse gases (GHG) cycle and hence take more

time to be effective. While potentially more expensive, adaptation could have larger

effects on impacts more quickly. As a result of that, it has become commonly accepted

that a successful climate strategy should compound mitigation and adaptation. The

accurate combination between adaptation and mitigation that can best address climate

change is still an open question. Both options are needed because they can reduce cli-

1See Fankhauser and Soare (2013) for a comprehensive guide of adaptation strategies and different
measures of adaptation to combat climate change.
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mate change vulnerability through two different, but complementary manners. The

first channel decreases its causes while the second addresses its effects. Therefore, it

seems natural to include adaptation within an Integrated Assessment Model (hereafter,

IAM).

A so-called IAM for climate change is a multiequation computerised model link-

ing aggregate economic growth with simple climate dynamics to analyse the economic

impacts of global warming. In other words, it is essentially a dynamic model of an econ-

omy with a controllable GHG-driven externality of endogenous greenhouse warming.

IAMs have proven themselves useful for understanding some aspects of the economics

of climate change—especially in describing outcomes from a complicated interplay of

the very long lags and huge inertias involved. They have been used, for example, by

the AR4 (Parry et al., 2007), AR5 (IPCC, 2013), the Stern Report (Stern, 2006), and

the Interagency Working Group on Social Cost of Carbon (2010), which plays a central

role in defining current U.S. government policies around carbon emissions. The IAM

approach was pioneered with the development of the DICE model (Nordhaus, 1991,

1993). Current examples include the DICE/RICE models (Nordhaus and Yang, 1996;

Nordhaus and Boyer, 2000; Nordhaus, 2010; Nordhaus and Sztorc, 2013), the PAGE

model (Hope et al., 1993; Hope, 2006), the FUND model (Tol, 1999, 2013), and the

WITCH model Bosetti et al. (2006), among others.

Integrated analysis of adaptation can assess the costs, benefits, and uncertainties of

these policies, and ought to be able to provide important insights for their development

and implementation. In Patt et al. (2010), the reader can survey how modellers have

chosen to describe adaptation within an Integrated Assessment framework. Recent

efforts have gone further towards making adaptation explicit by including adaptation as

a specific control variable within IAMs (de Bruin et al., 2009; Lecocq and Shalizi, 2007).

Still, there is broad agreement that more needs to be done to get adaptation better

represented within those models (Stern, 2006). In this chapter, we help to understand

how adaptation forces work by exploring the optimal intertemporal balance between

mitigation and adaptation under various adaptation settings.

We will use the Dynamic Integrated Climate Change (DICE) model as our reference

IAM. The standard DICE model assumes that a single world producer must choose

levels for three simultaneously determined variables: current consumption, investment,

and greenhouse gases reduction. We will enrich the DICE model so as to encompass

different adaptation strategies and then analyse carefully how the optimal mix of mit-

igation and adaptation changes under different adaptive strategies and cost settings.

First, we will introduce the AD-DICE model based on de Bruin et al. (2009), in which

proactive adaptation is a control variable that only has an effect in the current pe-
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riod so that one period’s adaptation does not affect damages in the next period. We

will explore how the mix varies in response to different cost structures. Calibrating

the model so as to mimic the optimal mitigation policy of the original DICE model,

we show how the optimal mix between mitigation and adaptation is balanced in both

variables, demonstrating the strategic complementarities between mitigation and adap-

tation. It is only after a hundred years that mitigation forces start to dominate. This

occurs in response to a falling abatement cost structure in the last years of the simu-

lation. We also show that the composition of this mix depends crucially on the shape

of the protection cost curve.

Since some types of adaptive strategies have a stock nature that can have long lived

effects, we allow in a second exercise the possibility of building a stock of adaptation

that impacts the economy with some lag. Following McCarl and Wang (2013), we

will modify the standard formulation of DICE and study how the optimal balance

of mitigation-adaptation encompasses the new adapting behaviour. We show that the

possibility of building a stock of adaptation that helps to combat climate change effects,

creates incentives to allocate a relatively greater amount of resources to adaptation from

the beginning and deter strong mitigation until it is extremely urgent at the expense

of having a very large peak of carbon stock in the atmosphere.

With the objective of preparing our framework model to further enhancements and

uncertainty analysis, we cast the DICE in a recursive way. To do so, we follow the

work by Traeger (2014). This author has recently promoted a state-reduced, recursive

dynamic programming implementation of the DICE model which, in its basic specifica-

tion, has only 4 state variables. Basically, the reduction is achieved by simplifying the

carbon cycle and the temperature delay equations. This leaves us with some margin

to enrich the model with new features or uncertain components. We provide some

benefits of casting the model in a recursive way. In particular, the recursive AD-DICE

is not sensitive to the specification of the terminal conditions and provides us with the

policy functions to run alternative simulations. Also, it sets the perfect environment

to include further dimensions in our model. In particular, it enables us to properly

include different types of uncertainties and/or stochastic behaviour of certain variables

and parameters.

The remainder of this chapter is organised as follows. In Section 2.2, we present the

benchmark DICE model and introduce the recursive AD-DICE. In Section 2.3 some

benefits of the recursive formulation are presented. Section 2.4 performs a preliminary

analysis of the mitigation-adaptation optimal mix under deterministic conditions and

different adaptation costs and strategies. Section 2.5 will provide some concluding

remarks.
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2.2 The model

In this section we present the main ingredients of the version of the DICE model that

we will use in this study. We will describe its general functioning and all the equations

involved.2 In particular we will distinguish between those processes relative to the eco-

nomic aspects of the model from those stemming from the climatic relationships. We

will show how these two sectors interrelate through the damage function. Next, follow-

ing de Bruin et al. (2009), we will incorporate adaptation to our model and formulate

the whole system in a recursive way, obtaining as a by-product the Bellman equation

that describes its dynamics. We will also provide a computationally convenient way of

representing the model, that is, the normalised Bellman equation.

Figure 2.1: AD-DICE model workflow

Production
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2.2.1 The recursive DICE model

The DICE model is a simple climate-economy model that, with a small bunch of equa-

tion and variables, loyally depicts the carbon cycle and optimally allocates investment

and mitigation decisions.3 Inspired by the Ramsey model (embodied in the neoclassi-

cal growth theory), DICE is a tractable intertemporal optimisation model of economic

growth and climate impacts. The DICE model is a global model that aggregates differ-

ent (homogeneous) countries into a single level of output, capital stock, technology and

emissions. In this model the world is assumed to have a well-defined set of preferences,

represented by a social welfare function, which ranks different paths of consumption.

The social planner chooses the optimal path of consumption (trading off carbon mit-

igation and capital investment) that maximises the social welfare objective function.

2Further details and derivations can be found in Traeger (2014).
3The motivation and processes governing this model are fully described in Nordhaus (2008).
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Welfare is the discounted sum of utility over time, where the constant relative risk

aversion utility function expresses preferences over per capita consumption

W =
∑
t∈T

1

(1 + δu)t

Lt
(
Ct
Lt

)1−η

1− η

 , T = {0, 1, . . . ,∞}, (2.1)

where W is total social welfare, Ct is the level of this generation’s consumption, Lt
denotes total population at time t, δu is the rate of social time preferences at which

future utility streams are discounted. Hence, it is used to compare utility across differ-

ent generations. The parameter η captures the aversion of the social planner to having

unequal consumption per capita across generations, that is, it measures the degree of

risk aversion to consumption inequality. Also, since we are working with a constant

relative risk aversion (CRRA) utility function, its inverse (1/η) denotes the intertem-

poral elasticity of substitution in consumption. In DICE utility increases in population

and per capita consumption, with diminishing marginal utility from the latter.

Economic sectors in the DICE model

In DICE, our simplified economy makes investments in capital, thereby abstaining

from consumption today in order to increase consumption in the future. The DICE

model extends this approach by including the “natural capital”. In other words, we

can see concentrations of GHG as negative natural capital and emissions reductions as

investments that raise the quantity of natural capital. By devoting output to emissions

reductions, economies reduce consumption today vet prevent economically harmful

climate damage and thereby increase consumption possibilities in the future.

The production equation of our simplified economy is a standard Cobb-Douglas

production function, which uses as inputs endogenous capital Kt, exogenous labour

Lt, and exogenous labour augmenting technology At. This output, if unmitigated,

has associated carbon intensity, resulting in greenhouse gas emissions that warm the

atmosphere. Hence, the gross (potential) output at time t would amount to

Y gross
t = (AtLt)

1−κKκ
t , (2.2)

where κ represents the share of capital in production.

Population, Lt, which simultaneously represents labour, and technology, At, will

grow at an annual growth rate of gL,t and gA,t, respectively. Population at time t is

given by the following equation
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Lt = L0 + (L∞ − L0)(1− exp(−g∗Lt)), (2.3)

where L0 denotes the initial global population and L∞ the value to which this variable

steadily converges, or asymptotic population. The parameter g∗L characterises the

speed of convergence from initial to the asymptotic population value. By solving this

difference equation we have that the equation defining annual population growth in

DICE has the continuous time approximation

gL,t =
g∗L

L∞
L∞−L0

exp(g∗Lt)− 1
. (2.4)

The outstanding technology level in the economy, At, grows at an exponentially

declining rate

gA,t = gA,0 exp(−δAt), (2.5)

leading to the analytic continuous time solution

At = A0

(
exp gA,0

1− exp(−δAt)
δA

)
. (2.6)

Production in the DICE model requires a determined proportion of carbon, carbon

intensity, which is emitted into the atmosphere. We assume an exogenous decrease

of the carbon intensity of production, indicating a progressive decarbonisation of the

economy. This propensity to emit carbon grows at the (decreasing) rate gσ,t = gσ,0 exp(-

δσt), leading to the continuous time representation

σt = σ0

(
exp gσ.0

1− exp(−δσt)
δσ

)
. (2.7)

We can partially lessen the amount of emitted carbon by paying for abating emis-

sions. The abatement cost coefficient Ψt falls exogenously over time and is given by

Ψt =
σt
a2

a0

(
1− 1− exp(g∗Ψt)

a1

)
. (2.8)

The parameter a0 denotes the initial cost of the backstop (in 2005), a1 denotes the

ratio of initial over final backstop, and a2 denotes the cost exponent. The rate g∗Ψ
captures the speed of convergence from the initial to the final cost of the backstop.

The cost of mitigation (as a proportion of output) is given by a convex power

function of the decision variable for carbon mitigation, µ, in which the marginal cost

of mitigation increases more than linearly with µ
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Λ(µt) = Ψtµ
a2
t . (2.9)

One of the most studied components in the literature of climate change and one of

its foundational parts of the economic model of IAMs is the climate “damage function”,

which specifies how temperatures or other aspects of climate ultimately affect economic

activity. In the DICE model, the damage function takes the form

D(Tt) =
1

1 + b1Tt
b2
. (2.10)

Climate damages act as a claim on output, reducing the amount that can be spent

on either welfare-improving consumption today or investment in the future capital

stock. DICE uses an aggregate damage function that gives the fraction of economic

output lost to temperature during time period t, formulated as a quadratic function of

Tt, the equilibrium change in global mean surface temperature above the pre-industrial

level. At the optimum, the social planner sets the level of greenhouse gas such that the

marginal cost of mitigation is equal to the marginal benefit of avoided climate impacts

over the model time path.

DICE calibrates the b parameters to match cross-sectional estimates of climate

damages reviewed in Tol (1999) and then adjusts damages up by 25% to incorporate

other non-monetised damages, such as impacts on bio-diversity, and to account for

potentially catastrophic scenarios, such as sea level rise, changes in ocean circulation,

and accelerated climate change.4 The DICE model uses this common proportional

damage function for the entire world.

In order to ease the numerical approximation of the problem, for a given number

of basis in the capital dimension, we normalise capital and consumption in effective

labour units. In this way, we can reduce the node density required to achieve a given

precision in the approximation. Hence, we define

kt =
Kt

AtLt
and ct =

Ct
AtLt

,

yielding the (labour effective) gross production ygrosst = kκt . Accordingly, net produc-

tion is derived by subtracting abatement expenditure and climate damages to gross

production

yt =
1− Λ(µt)

1 +D(Tt)
kκt =

1−Ψtµ
a2
t

1 +D(Tt)
kκt . (2.11)

4See Nordhaus and Sztorc (2013) for further details
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Investment in capital goods (law of motion of capital) is residually determined by

subtracting the non-consumed part from net production

kt+∆t = [(1− δk)∆tkt + yt∆t− ct∆t] exp[−(gA,t + gL,t)∆t], (2.12)

where δk is the annual rate of capital depreciation.

Climatic (geophysical) sectors in the DICE model

The distinctive feature of this model is the inclusion of several geophysical relation-

ships that link the economy with the different factors affecting climate change. These

relationships include the carbon cycle, radiative forcing equations and climate change

equations, most of them being borrowed from the specialised literature. In the DICE

model the only GHG that is subject to emissions control is industrial CO2, which is,

the major contributor to global warming.

Non-industrial CO2 emissions and radiative forcing from non-CO2 greenhouse gases

are governed by the following equations. Emissions of CO2 from land use change an

forestry (LUCF) are assumed to decline exponentially following

Bt = B0 exp(−δBt). (2.13)

Non-CO2 greenhouse gases are assumed exogenous to the model and cause the

following (external) radiative forcing5

EFt = EF0 + 0.01(EF100 − EF0)×min{t, 100}. (2.14)

To model the relation between air in the atmosphere and the oceans, an exogenous

estimate of the atmosphere-ocean temperature differential, which regulates cooling of

the atmosphere caused by the oceans’ heat capacity

∆Tt = max
{

0.7 + 0.02t− 0.00007t2, 0
}
. (2.15)

Total GHG (anthropogenic) emissions are the sum of industrial emissions and emis-

sions from land use change and forestry Bt.

Et = (1− µt)σtAtLtkκt +Bt, (2.16)

where the first (industrial) are proportional to gross production AtLtk
κ
t , and the emis-

5Radiative forcing is a measure for the change in the atmospheric energy balance. The reader may
think of it as the flame that greenhouse gases turn on to slowly warm the planet over time.
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sion intensity of production σt, and they are reduced by the emission control rate µt.

The flow of CO2 emissions accumulates in the atmosphere. Atmospheric carbon in

the next period is the sum of pre-industrial carbon Mpre, current excess carbon in the

atmosphere Mt −Mpre net of its (natural) removal, and anthropogenic CO2 emissions

Mt+∆t = Mpre + (Mt −Mpre)(1− δM,t)
∆t + Et∆t. (2.17)

The pre-industrial emission stock Mpre is the steady state level in the absence of

anthropogenic emissions. Equation (2.17) is our approximation to the carbon cycle.

In order to get an overall reduced number of state variables in our formulation of

the recursive problem, the carbon cycle is approximated in a very stylised way, using

an exogenous removal rate of atmospheric CO2, δM,t, that assumes a declining rate of

abating emissions from pre-industrial levels

δM,t = δM,∞ + (δM,0 − δM,∞) exp [−δ∗M t] . (2.18)

The overall atmospheric temperature change is a delayed response to radiative

forcing

Ft+∆t = ηforc
ln Mt+∆t

Mpre ind

ln 2
+ EFt, (2.19)

which is the result of the forcing caused by atmospheric CO2 and the non-CO2 forcing

that follows the exogenous process EFt. Note that the forcing parameter ηforc con-

tains the climate sensitivity parameter, which characterises the equilibrium warming

response to a doubling of pre-industrial CO2 concentrations. The temperature state’s

equation of motion is

Tt+∆t = (1− σforc)Tt + σforc
Ft+∆t

λ
− σocean∆Tt. (2.20)

The parameter σforc captures the warming delay and σocean quantifies the ocean

cooling in a given time step that derives from the atmospheric ocean temperature

difference ∆Tt. The parameter λ denotes the ratio of forcing to temperature increase

under a doubling of CO2 concentration. The last term in the equation replaces the

oceanic temperature state in DICE.

2.2.2 The recursive AD-DICE model

Next, we feed the original DICE model with extra features. In particular, we include

adaptation as a separate choice variable. Now, adaptation and mitigation investments
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will compete and available resources to combat climate change will be allocated effi-

ciently between those two variables. We will write the Bellman equation associated to

this new specification.

Instantaneous adaptation à la de Bruin

Adaptation directly decreases the total damages of climate change. But adaptation

choices are potentially quite different to mitigation decisions and differ in cost. These

costs are referred to as protection costs. While the original DICE model assumes

that adaptation is included in the damage function and is implicitly assumed to be

optimal, we rather include adaptation explicitly in the model. Following de Bruin

et al. (2009), we model adaptation as a decision variable chosen by the planner that

has some benefits and costs. Accordingly, total damages of climate change are split

into the sum of residual damages and protection costs

Dt = RDt(GDt, pt) + PCt(pt), (2.21)

where residual damages RDt are the “unprotected” part of total damages6

RDt = GDt(1− pt),

whereas gross damages amount to

GDt = 1 + b1T
b2
t ,

and protection costs take the form

PCt = γ1p
γ2
t ,

with pt representing the optimal level of protection chosen each period. In this setup,

optimal mitigation and adaptation are jointly modelled and both decisions are separa-

ble. In this setup, adaptation and mitigation will behave as economic substitutes. In

the original DICE model, mitigation is set by the marginal damage cost. In this frame-

work, the adaptation level is chosen so as to minimise net damages plus adaptation

costs, while the mitigation level is chosen to minimise the aggregate of net damages

and adaptation costs plus mitigation costs.

6We could play along with another alternative specifications of the damage function. For example,
RDt = GDt

pt
.
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The Bellman equation

An optimal decision has to be made at each period in which we solve the model. The

Bellman equation reduces the complexity of the decision tree by breaking it up into a

trade-off between current consumption utility and future welfare, where future welfare

is a function of the climatic and economic states in the next period. The best possible

total value of present and future welfare is the so-called value function V (Kt,Mt, Tt, t).
7

V (Kt,Mt, Tt, t) = max
Ct,µt,pt

Lt

(
Ct
Lt

)1−η

1− η
∆t+ exp (−δu∆t)V (Kt+∆t,Mt+∆t, Tt+∆t, t+ ∆t).

(2.22)

This maximisation problem is subject to the equations of motion of capital (2.12),

carbon (2.17), and temperature (2.20), and the following constraints

0 ≤ Ct ≤ Yt, 0 ≤ µt ≤ 1 and 0 ≤ pt ≤ 0.8, (2.23)

where we have imposed that not more than 80% of unmitigated damages can be

adapted. This is adapted from de Bruin et al. (2009), who base their assumptions

on a deep review of the adaptation literature. The decision variable for carbon mitiga-

tion, µ, equals the fraction of emissions from the business-as-usual emissions projections

that are avoided through decarbonisation.

As we have noted from the beginning, one of the main features of our approach is

that we can faithfully describe the mechanics of the original DICE model using only

four state variables. These variables are produced capital Kt, the stock of atmospheric

carbon Mt, atmospheric temperature Tt, and time t. It is convenient to our approach

to include time as a state variable for a number of reasons: it makes it possible to

contract the Bellman equation to an arbitrary precision and enables us to solve the

model for an infinite time horizon with an arbitrary time step.8

Given the value function, we can analyse the control rules and simulate different

representations of the optimal policy over time. For the simulation, we either fit a

continuous control rule, or we forward-solve the Bellman equation, knowing the value

function, starting from the initial state.

7For numerical considerations, we will work with the normalised version of this Bellman equation.
8Bear in mind that Nordhaus’ DICE model is solved within a 10-year time step. However, given

our time flexibility, we will calibrate and solve the model in a more illustrative 1-year time step.
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The normalised Bellman equation

The original Bellman equation formulation (2.22) presents some drawbacks. In par-

ticular, since capital will eventually take very large numerical values, our numerical

optimiser will struggle to find the optima along that grid if we choose a small number

of nodes. However, if we proceed as many economic models, by normalising by effective

labour units we can gain accuracy very cheaply by shrinking the set where capital stock

belongs. Thus, we restate the key variables in effective labour units, that is, ct = Ct
AtLt

and kt = Kt
AtLt

, we can express the general Bellman equation (2.22) as follows:9

V ∗(kt,Mt, Tt, t) = max
ct,µt,pt

c1−η
t

1− η
∆t+ βt,∆tV

∗(kt+∆t,Mt+∆t, Tt+∆t, t+ ∆t), (2.24)

where

βt,∆t = exp ((−δu + gA,t (1− η) + gL,t) ∆t) (2.25)

represents a growth-adjusted discount factor. It depends on time because of the non-

constant growth rates in DICE’s exogenous processes. Without normalising capital to

effective labour units we would need a much larger state space for capital to cover at

least a reasonably long time horizon.

2.2.3 Solving the model

We solve the normalised Bellman equation (2.24) by help of the function iteration

algorithm described in Appendix 2.B. We approximate the value function V ∗ by using

a set of Chebychev polynomials basis and updating coefficients by collocation at the

Chebychev nodes.

A convenient strategy for the numerical implementation of the model is to maximise

over the abatement cost rather than over the abatement rate µt as the algorithm

behaves more efficiently by searching on this magnitude. Analogously, we maximise

over PCt rather than pt. The two are strictly monotonic transformations of each other

so that the nature of the problem remains unchanged. The optimal choices in the

problem must satisfy the following system of inequalities

9Further details on this derivation can be found in Traeger (2014)
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 1
kκt

1+b1T
b2
t

kκt

1+b1T
b2
t

0 1 0

0 0 1


 ct

Λt

PCt

 ≤
 yt

Ψt

PCmax

 with ct,Λt, PCt ≥ 0,

which derive straight from (2.23). The first row is simply telling us that quantities

devoted to consumption, mitigation and adaptation must not exceed total production

in a given year. The second row states that, on the event of full mitigation (µt = 1),

mitigation costs cannot be larger than Ψt (Λ(1) = Ψt · 1a2 = Ψt). Analogously, there

exists a ceiling, PCmax, for adaptation costs at PCmax = γ1 · 0.8γ2 .

Since we also have to approximate the value function over the state variable t on

the interval [0,∞), we have to restrict its natural unboundedness, as this poses a clear

inconvenient when generating the approximation grid.10 Hence, we perform a strictly

monotonic transformation that maps t ∈ [0,∞) to

τ = 1− exp(−ζt) ∈ [0, 1).

We set ζ = 0.02 and refer to τ as artificial time. Hence, we generate the grid on

the time axis using Chebychev nodes on the interval [0, 1).

We run the resulting code in Matlab using the compecon optimiser as presented in

Miranda and Fackler (2002). Since each of the optimisation at the different Chebychev

nodes is independent conditional on the time step, we can compute each of them

independently. Hence, we make use of the Parallel Programming Toolbox in Matlab

to parallelise that process so that the whole process speeds up nearly 4 times.11

2.3 Some benefits of the recursive formulation

Almost all IAMs, including DICE, are solved using a simple solution technique: the

model is truncated to a finite horizon so that standard non-linear programming methods

may be applied with standard software packages. We denote this technique the finite

horizon method. This method, though convenient has some limitations: First, it does

not work well on stochastic models for which certainty equivalence does not hold. The

finite horizon method is not recursive and thus requires specification of all possible

10Alternatively, we could reduce the state space to only 3 dimensions, if we are willing to step back
discretely in time from a finite planning horizon. The solution algorithm is similar to the one described
above. However, it becomes more important to start with a good initial guess. See Cai et al. (2015)
for an example of solving the DICE model over a finite time horizon.

11In Windows 10, Intel i7-2600 @3.40GHz PC. Matlab R2011a.
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realizations of the random variables over time. Hence for a stochastic problem spanning

hundreds of years such as climate change, only the simplest possible random variables

are possible. This advantage of our approach will made explicit in the next chapter.

Second, inference is difficult because the solution produces only an optimal solution

path, and says nothing about the relationship between the solution and the state

variables and parameters. Third, it does not compute the policy function, then the

model cannot be simulated for alternative starting conditions or realizations of the

random variables without resolving the entire model. Finally, the solution method can

be sensitive to the specification of the terminal conditions, which makes sensitivity

analysis difficult.

The recursive formulation will be useful, not only to solve and compare different

specifications of the model under deterministic conditions but will also prepare the

necessary framework to include different uncertain and/or stochastic scenarios (This

will be done in the next chapter). In particular, our accompanying applications have

the necessary precision to analyse the differences that future stochasticity, or the an-

ticipation of learning, have on today’s optimal policy. The non-recursive methodology

would only allow for a few discrete uncertain events, or exogenous learning over three

discrete state of the world realisations at one given time. Alternatively to recursive

methods, Monte-Carlo analysis of the non-linear programming solution to the model

are the most common approach to addressing uncertainty in the integrated assessment

literature. However, Monte-Carlo methods, as traditionally implemented in this niche

of the literature, do not model decision making under uncertainty. They present a

sensitivity analysis that averages over deterministic simulations.

Another two additional features of our solution technique are the following: First,

we have managed to cast and solve the model in an annual basis, which enables us with

some additional degrees of freedom for including more timely additional characteris-

tics or constraints to our model. Second, we take benefit of the independent nature

of the resolution of the Bellman equation at different grid points to implement the

code in a parallel way. This implies faster total solution time and eases the curse of

dimensionality that these types of models typically suffer.

2.4 Basic magnitudes and time paths

In this subsection we present the main magnitudes, as obtained from a basic calibration

of our model. When calibrating the model our main purpose was to match the optimal

mitigation policy derived from the original DICE model. Thus, we adopt most of the

values proposed by Nordhaus (2008) with the exception that, now, we run the model
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in an annual step rather than decadal. Hence, some parameters affecting the dynamics

of natural processes are modified accordingly. Both climatic and economic parameters

are described in Table 2.1 and Table 2.2, respectively.

In this setup, adaptation and mitigation decisions are separable and both are mod-

elled as economic substitutes, that is, more mitigation (adaptation) reduces the need

for adaptation (mitigation). In the optimal policy solution we will find bundles with

both adaptation and mitigation because mitigation cannot avoid all climate change

and adaptation cannot avoid all impacts. Because of the slow working of the carbon

cycle, few of the benefits of abating emissions will be felt in the short-run. That is why

it is necessary to both adapt and mitigate immediately.

We run the model in an annual step (∆t = 1) starting at year 2010. Basic results

are depicted in Figure 2.2. As it can be observed in Figure 2.2a, emissions will not cease

to grow in the coming years resulting in an increasing atmospheric CO2 concentration,

describing a hump-shaped time path that will peak in a two centuries‘ time horizon.

Accordingly, because of the direct relation between damages and carbon concentration,

damages of climate change follow a similar shape, as depicted in Figure 2.2c. Abated

emissions increase steadily over the period until full abatement is reached. Despite

mitigation efforts, CO2 concentrations do not stop growing in the early years due to

the extremely high inertias featured in the (simplified) carbon cycle. In Figure 2.2b

we can observe that, given the cost structure of abatement, we reach a point in time

(around year 2175) when full abatement of emissions is optimal. This behaviour is

maintained beyond this point.

As for the optimal mitigation-adaptation mix (Figure 2.3), it shows positive and

almost balanced amount of resources allocated to each category, demonstrating the

strategic complementarities between mitigation and adaptation. It is only after a

hundred years that mitigation forces start to dominate. This occurs in response to a

falling abatement cost structure in the last years of the simulation. Thus, according

to our model, in order to combat climate change in the efficient way, the short-term

optimal policy would consist of a mixture of adaptation measures and investments in

mitigation, even though the latter will only decrease damages in later periods. The

first channel decreases its effects while the second addresses its causes.

Our attempt is the first to analyse the optimal composition and time path of the

mitigation-adaptation mix by implementing the AD-DICE model in a recursive way.

This poses some barriers to compare our results to other findings in the literature.

Additionally, specific figures will depend crucially on the employed framework, the

adaptation modelling’s strategy and the basic calibration of the main parameters in

the model. However, some general messages can be extracted. Similarly to us, Bosello
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et al. (2010) — building on the WITCH model (Bosetti et al., 2006)–, find that the

two climate strategies behave as complements and they both need to be part of an

optimal strategy to fight climate change, although both strategies compete about scarce

resources. They also show that, in a world without catastrophic events, adaptation is

unambiguously the preferred option by a factor of 3. Meanwhile, we advocate for a

balanced composition of the two strategies in the early years. However, to obtain their

results they need to resort to extremely low temporal discount factors. Meanwhile,

their benchmark time composition of the mix is quite similar to ours: mitigation has

to be anticipated because environmental and technological inertia delays its benefits in

the far future.

2.4.1 Alternative protection costs

Immediately after our first assessment of the magnitude and timing of adaptation and

mitigation, we evaluate how adaptation decisions respond to different protection costs.

Specifically, we propose a notably different protection cost function with a different

shape. The new function implies higher protection costs for low levels of adaptation,

that is, it assumes a decreasing marginal cost of protection, possibly reflecting the

accumulation of know-how when investing in adapting goods/knowledge. The new

protection cost function takes the form

PC∗t = γ1

(
1

1− pt

)γ2

. (2.26)

Protection costs are given as a function of the level of protection. In this exercise,

we assume that this function is decreasing with the level of protection, meaning that it

is cheaper to protect us against the adverse effects of climate change when the desired

level of protection is high. Implicit in this assumption is the fact that, building new

infrastructures headed to protect is equivalent to a high level of protection.

We can look at the behaviour of the basic variables of the model in Figure 2.4.

Similarly to our benchmark case, the CO2 concentration path follows a hump-shaped

trajectory over our simulation period. In this case, though, we reach a maximum level

of CO2 stock in the atmosphere earlier in time. This comes as a result of mitigation be-

coming relatively cheaper very rapidly. Since it is optimal to start to strongly mitigate

after a few decades, the maximum level of carbon concentration at its highest moment

decreases considerably, compared to the benchmark scenario. The rest of variables

follow a similar pattern to the original formulation.

Adaptation and mitigation are still affected by each other in the same way as in the

original protection cost specification. Adaptation increases the benefits of mitigation
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in earlier periods and decreases them in later periods. Since it is still optimal to invest

in adaptation and it is cheaper as we increase the desired level, the new optimal mix

(Figure 2.5) describes how more (> 50%) resources are now allocated to adaptation

at the beginning of time. Given that adaptation is relatively cheaper when the level

of adaptation is low, it is optimal to favour adaptation in earlier periods. However,

since the cost structure of adaptation penalises high levels of resources allocated to

adaptation (we should understand this as the maintenance cost of adaptation measures

and adaptation infrastructures), now it becomes optimal to strongly shift our optimal

bundle to more mitigation. Consequently, full abatement of emission is reached earlier

in time, compared to the basic calibration scenario.

2.4.2 Cumulative adaptation: The ADS-DICE model

The way in which adaptation is modelled in de Bruin et al. (2009) results in adaptation

having effect only in the current period so that one period’s adaptation does not affect

damages in the next period, therefore ignoring the sometimes considerable time-lags

between the costs and benefits of adaptation measures. This assumption seems quite

restrictive, especially if we are working in a yearly time step. Besides that, the intrinsic

nature of some types of adaptation investments, like the construction of dykes, has a

long lasted impact that would be worth modelling.

One can rather think of adaptation as an investment that accumulates an stock

of knowledge, infrastructure, and etcetera, that yields profits with some lags of time.

In that spirit, we follow the approach by McCarl and Wang (2013) by allowing the

creation of a stock of adaptation as if the ’adaptation capital’ accumulates over the

years. Therefore, the resulting optimal adaptation decisions adjust to current and

future climate change damages rather than those in a single year. The incorporation of

a stock of adaptation boils down to including a new state variable that we will denote

Spt which evolves according to

Spt+∆t = (1− βp)∆tSpt + Ipt, (2.27)

where Ipt is equal to the total investment in protection. The residual damage function

would amount to

RDt = GDt(1− pt),

with

1− pt = α + (1− α)e−rSpt ,
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where α represents a percentage of unavoidable damage. As in the previous approach,

decisions on the level of adaptation and mitigation are separable but compete for

investment funds.

The (normalised) Bellman equation will feature and additional state variable Spt
denoting the accumulated adaptation stock

V ∗(kt,Mt, Tt, Spt, t) = max
ct,µt,pt

c1−η
t

1− η
∆t+ βt,∆tV

∗(kt+∆t,Mt+∆t, Tt+∆t, Spt+∆t, t+ ∆t),

with its respective transition equation

Spt+∆t = (1− βp)∆tSpt + Ipt.

The rest of restrictions in (2.22) also hold.

As a result of weak mitigation in earlier periods, the total stock of carbon in the

atmosphere (Figure 2.6a) reaches a much higher level than what is achieved in the

benchmark CO2 setting. Abatement of emissions remains low overall during the next

to centuries until the point where strong mitigation is the only option to combat the

extraordinary amount of CO2 levels, as seen in Figure 2.6b. At this point the total

amount of damages created in the economy are too high, of an order of magnitude 4

times greater than in the benchmark model (Figure 2.6c).

The fact that we can build a stock of adaptation that helps to combat climate

change effects, creates incentives to allocate a relatively greater amount of resources to

adaptation from the beginning and deter strong mitigation until it is extremely urgent.

This behaviour can be easily seen in Figure 2.7. More than half of the investment

resources are systematically deviated to build adaptation infrastructures up to the point

where strong mitigation efforts are needed to absorb climate change consequences.

In this scenario we have persistent adaptation plus unadaptable damages and invest-

ment competition. Looking at Figure 2.7, our temporal investment allocation results

show that both adaptation and mitigation are simultaneously employed as strategic

complements much as found in the benchmark specification. We do show in our results

a great immediate role for adaptation with a longer run transition to mitigation as the

damages from GHG concentrations increase.
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2.5 Conclusion

Integrated assessment modelling of adaptation to climate change is still at its early

stages. The AD-DICE model by de Bruin et al. (2009) is one of the few examples

in which adaptation is explicitly included in an IAM as a separable choice variable.

Incorporating new features into IAMs is highly desirable but comes at a cost. In

particular, it makes most of these models suffer from the curse of dimensionality.

To overcome this problem, we adapt a recent methodology proposed by Traeger

(2014) which casts the well established Nordhaus’ DICE model in a recursive way,

making it particularly suitable for incorporating additional characteristics to the model.

At the same time, it reduces the state space to only four state variables, thus, making

the model accessible to be solved in a regular computer. With this methodology in

mind, we extend the original DICE model and incorporate adaptation à la de Bruin

thus specifying adaptation as a separate decision variable and perform a thorough

analysis of different types of adaptation strategies under various scenarios.

In a preliminary exercise we calibrate and solve the model in its deterministic setup

and analyse its basic properties. Overall, our model reproduces quite faithfully the

major features of the original DICE model. In particular, it predicts a hump-shaped

time path for atmospheric CO2 concentrations with a peak in a two centuries‘ time

horizon. Accordingly, damages of climate change follow a similar shape. Abated emis-

sions increase steadily over the period until full abatement is reached. Despite mit-

igation efforts, CO2 concentrations don’t stop growing in the early years due to the

extremely high inertias featured in the (simplified) carbon cycle. As for the optimal

mitigation-adaptation mix, it shows positive and almost balanced resources allocated

to both variables, demonstrating the strategic complementarities between mitigation

and adaptation. It is only after a hundred years that mitigation forces start to domi-

nate. This occurs in response to a falling abatement cost structure in the last years of

the simulation. Thus, according to our model, in order to combat climate change in the

efficient way, the short-term optimal policy would consist of a mixture of adaptation

measures and investments in mitigation, even though the latter will only decrease dam-

ages in later periods. The first channel decreases its effects while the second addresses

its causes. Our results qualitatively resemble those of Bosello et al. (2010), applied to

the WITCH model. In particular, we both find that mitigation and adaptation behave

as strategic complements but compete for scarce resources in the short-term.

In subsequent exercises, we show that the final composition and timing of the

adaptation-mitigation mix depends crucially on both the assumed shape of the protec-

tion cost function and the accumulative nature of the adaptation stock. We exemplify

the first situation by choosing an alternative protection cost function that, in con-
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trast with the original formulation, penalises low levels of protection. As a result, the

total amount invested in protection is greater than in the benchmark case but, it de-

creases very rapidly since more resources are deviated to mitigate. In the second case

(ADS-DICE model), the fact that adaptation investments have a delayed and persis-

tent effect in the economy makes that the resources needed to maintain an optimal

level of protection are fewer than in the benchmark scenario. Again, in the distant

future, mitigation becomes more attractive due to shrinking operative costs and, as a

result, the mitigation share increases.

The methodology employed in this chapter show some potential benefits and ad-

vantages with respect to the traditional way of casting and solving the DICE model,

namely, it is not sensitive to the specification of the terminal conditions and provides

us with the policy functions to run alternative simulations. Also, it sets the perfect

environment to include further dimensions in our model. In particular, it enables us to

properly include different types of uncertainties and/or stochastic behaviour of certain

variables and parameters. This will be addressed in the next chapter.
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2.A Tables and Figures

Table 2.1: Parameters of the model (Climatic)

Climatic parameters
T0 0.76 In ◦C, temperature increase of pre-industrial in 2005

Mpre 596 In GtC, pre-industrial stock of CO2 in the atmosphere

M0 808.9 In GtC, stock of atmospheric CO2 in 2005

δM,0 1.4% initial rate of CO2 removal from the atmosphere per year

δM,∞ 0.4% Asymptotic rate of CO2 removal from the atmosphere per year

δ∗M 1% Rate of convergence to asymptotic rate of atmospheric CO2 removal

B0 1.1 In GtC, initial CO2 emissions from LUCF

δB 1.05% Growth rate of CO2 emission from LUCF per year

s 3.08
Climate sensitivity (equilibrium temperature response to doubling of

atmospheric CO2 concentration w.r.t. pre-industrial)

ηforc 3.8 Forcing of CO2-doubling

λ 1.23 Ratio of forcing to temperature increase under CO2-doubling

EF0 -0.06 External forcing in year 2000

EF100 0.3 External forcing in year 2100 and beyond

σforc 3.2% Warming delay, heat capacity atmosphere, annual

σocean 0.7% Parameter governing oceanic temperature feedback, annual
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Table 2.2: Parameters of the model (Economic)

Economic parameters
η -2 Intertemporal consumption smoothing preference

b1 0.284% Damage coefficient

b2 2 Damage exponent

γ1 0.115 Protection coefficient

γ2 3.6 Protection exponent

βp 10% depreciation of Stock of Adaptation

α 20% percentage of unavoidable damage

r 1.43 Stock of Adaptation’s discount factor

δu 1.5% Pure rate of time preference per year

L0 6514 In millions, population in 2005

L∞ 8600 In millions, asymptotic population

g∗L 3.5% Rate of convergence to asymptotic population

K0 137 In trillion 2005-USD, initial global capital stock

δK 10% Depreciation rate of capital per year

κ 0.3 Capital elasticity in production

A0 0.0058
Initial labour productivity; corresponds to total factor productivity

of 0.02722 used in DICE

gA,0 1.31%
Initial growth rate of labour productivity corresponds to total factor

productivity of 0.9% used in DICE, per year

δA 0.1% Rate of decline of productivity growth rate per year

σ0 0.1342 CO2 emissions per unit of output in 2005

gσ,0 -0.73% Initial rate of decarbonisation per year

δσ 0.3% Rate of decline of the rate of decarbonisation per year

a0 1.17 Cost of backstop in 2005

a1 2 Ratio of initial over final backstop cost

a2 2.8 Cost exponent

g∗Ψ -0.5% Rate of convergence from initial to final backstop cost
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(a) CO2 level (b) Abatement rate)

(c) Investment rate (d) CO2 emissions)

Figure 2.2: Benchmark AD-DICE

Figure 2.3: Adaptation-Mitigation mix (benchmark AD-DICE)
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(a) CO2 level (b) Abatement rate)

(c) Investment rate (d) CO2 emissions)

Figure 2.4: AD-DICE (alternative protection costs)

Figure 2.5: Adaptation-Mitigation mix (alternative protection costs)



2.A Tables and Figures 79

(a) CO2 level (b) Abatement rate)

(c) Total Damages (d) Stock of Adaptation)

Figure 2.6: ADS-DICE

Figure 2.7: Adaptation-Mitigation mix (ADS-DICE)
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2.B Solution of the model

There are different approaches to studying dynamic problems. In our case, since it is

infeasible to find a closed form solution we have to resort to numerical methods to find

a solution to the dynamic problem. Within numerical methods we find again a variety

of ways to approximate a solution, among which, we choose value function iteration.

This type of solution to the model basically amounts to finding a fixed point in our

Bellman equation. Next we describe the basics of our algorithm.

2.B.1 The Value Function Iteration algorithm

Denote by a our vector of control variables and assume that we summarise all our state

variables into the vector x subject to the equation of motion

xt+1 = g(at, xt).

With t denoting calendar time, and defining s as time-to-go before the end of the

problem, s = T − t, we write the value function as V s(x) = V ∗(x, t). The dynamic

programming equation for s ≥ 1 is

V s(x) = max
{
U(a, x) + βV s−1(g(a, x))

}
, (2.28)

with the boundary condition

V 0(x) = max
a
U(a, x), (2.29)

where the superscript denotes the number of decisions remaining after the current

decision.

The algorithm begin by finding the solution to the problem on the right side of

equation (2.29) to obtain the function V 0(x). Substituting that function into equation

(2.28) for s = 1, we then solve the resulting problem to obtain V 1(x). Proceeding

iteratively, we solve the T one-stage problems. At each stage, s, we obtain two func-

tions: the decision rule, denoted as as(x) = arg maxU(a, x), and the value function

V s(x). We use the value function for the “backward sweep”, increasing s, approach-

ing the initial time period. We may use either the decision rule or the stored value

functions for the “forward sweep”. Given the initial condition, the value of xt = x̄, we

can find the trajectory of the optimally controlled state variables. In general, we can

neither calculate nor store exact solutions for the value function or the control rule.

We therefore approximate the value function in each step. Given the value function,
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we obtain the control rule from a quasi-static optimization problem. Hence, we will

only approximate and store the value function, and not the control rule. In order to

approximate the value function we will have to decide on the intervals over which we

approximate the function and the approximation method.

A summary of the value function iteration algorithm would read

1. Initialisation

(a) Choose how to approximate the value function. Usually this step involves

the choice of:

i. basis functions to approximate the value function,

ii. interval of the state space on which to approximate the value function,

iii. interpolation nodes at which you evaluate the optimization problem.

(b) For s = 0 (T =∞), pick an initial guess for the approximate value function

V 0. Set s = 1 and proceed to step (c).

2. Iteration

(c) Maximise the right hand side of the Bellman equation (2.28) for s.

(d) Approximate the solution of the maximization step. Usually this step in-

volves solving for the coefficients of the basis vectors. You obtain the value

function V s.

(e) Increment time to go s by 1 and repeat steps (c) and (d) until a break

criterion is satisfied up to a given tolerance, usually related to the change of

the value function or the basis coefficients from one iteration to the next.

3. Simulation

(f) Simulate the system dynamics by solving the Bellman equation (2.28) it-

eratively forward in time. Starting with the initial condition xt = x̄, the

simulation solves a sequence of quasi-static optimization problems, given

the (approximate) value functions at every point in time. If we fitted the

policy functions in the earlier steps, we can use these directly to simulate

the system dynamics. In the stochastic case, we can simulate using expected

draws as a proxy, and then also simulate large sets of truly random paths

and determine distributional properties.

In the case where T = ∞, we have an autonomous problem and we usually store

only the current and the previous value function. We keep track of the last iteration’s
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value function so that the break criterion can evaluate changes from one iteration to

the next. In the case of an infinite time horizon, s is not the time to go, but simply

counts the iterations starting from our initial guess.

2.B.2 (Value) Function approximation

Even if we knew the function V s−1, it would rarely be the case that we could find a

closed from solution for function V s. Assume we cannot find a closed form solution

but want to solve the problem exactly (up to numerical precision). Then, we would

have to solve the maximization problem for every x ∈ X and store the optimisation

result, i.e. the value of the function V s, for every point. Given X ⊂ R is uncount-

able, this procedure is infeasible. But we can approximate continuous functions on a

compact support X ⊂ R arbitrarily closely by a (countable) sequence of polynomials.

In general, there are different countable basis of function spaces. Let us denote a se-

quence of orthonormal basis functions by φ0, φ1, φ2, . . .. Then, every function f in the

corresponding space can be written as

f =
∞∑
i=0

c∗iφi,

with coefficients in R

c∗i =

∫
X

φi(x)f(x)dx. (2.30)

A countable infinite series is still too much to keep track of. We therefore resort

to a finite subset of the basis. In addition, we have to find an efficient way of dealing

with the integration in equation (2.30). A simple but effective approach replaces the

integral by a sum, evaluating both functions only at a finite set of points, the so-called

interpolation nodes x1, . . . , xJ . Then, we obtain the approximate formula

f ≈
N∑
i=0

ciφi with ci =
J∑
j=1

φi(xj)f(xj) = Φ′if . (2.31)

In the value function approximation, we fit the value function V s to the solution of

the maximisation problem on the right hand side of the Bellman equation (2.24). Here,

the vector f corresponds to the solution of the Bellman equation at the interpolation

nodes. We use the vectors Φi to find the coefficients of the basis functions φi, given

only the finite vector of values at the interpolation nodes (of f or the maximisation

problem). We use the functions φi whenever we need to evaluate the approximated
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function between different interpolation nodes.

The strategy consists of choosing a sequence of J points, our interpolation nodes,

x0, x1, . . . , xJ−1 on an interval [a, b]; x0 = a and xJ−1 = b. We generate the value of

the function that we seek to approximate at each of these nodes. We also choose N

basis functions φi(x), i = 0, 1, . . . , N − 1. We approximate the function of interest as

a linear combination of these basis functions evaluated at the nodes.

Given the values of f(xj) and the basis functions φi(x), the curve-fitting problem is

to minimize the distance between the estimated values, f̂(xj), and the observed values,

f(xj). Define


f̂(x0),

f̂(x1),
...

f̂(xJ−2),

f̂(xJ−1),

 =


φ0(x0) φ0(x0) · · · φ0(x0) φ0(x0)

φ0(x0) φ0(x0) · · · φ0(x0) φ0(x0)
...

...
. . .

...
...

φ0(x0) φ0(x0) · · · φ0(x0) φ0(x0)

φ0(x0) φ0(x0) · · · φ0(x0) φ0(x0)




c0

c1

...

cN−2

cN−1


or using matrix notation

f̂ = Φf ,

where f̂ is a J × 1 vector of estimated values of f , evaluated at the J nodes; Φ is an

J ×N “interpolation matrix”; and c is the N × 1 vector of “basis coefficients”. Define

f as the J×1 vector with j’th element the known value f(xj). For J ≥ N , the vector c

that minimises the Euclidean distance between f̂ and f is the familiar Ordinary Least

Squares estimator

c = (Φ′Φ)
−1

Φ′f . (2.32)

The inverse exists because of the assumption that the basis functions φi are linearly

independent, and J ≥ N . The approximation of the function f(x) is f̂(x) = φ(x)c.

For the application at hand, consider the problem once the nodes and the basis

functions have been chosen. Here V s, rather than f , is the function that we want to

approximate. At s = 0 we solve the problem on the right side of equation (2.29) for

each of the nodes, resulting in the J values (not functions) V 0(xi), i = 0, 1, . . . , J − 1,

which we denote in vector form as V0. We obtain the basis coefficients as above,

yielding c0 = (Φ′Φ)−1 Φ′V0. The superscript 0 identifies these as the basis coefficient

at the 0 iteration, i.e. at the final stage of the problem. Our estimate of the function

V 0(x) is V̂ 0(x) = φ(x)c0. We now proceed iteratively, at each stage replacing the true
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but unknown function V s−1 with its approximation V̂ s−1(x) = φ(x)cs−1. For example,

at stage s, given cs−1, we solve

Vs
j ≡ max

a

{
U(a, xj) + βφ(g(a, xj))c

s−1}
for each each of the J nodes xj, j = 0, 1, . . . , J − 1. At stage s = 0 we can claim that

we know the values of V 0(xj), subject to the limits of numerical accuracy. At stages

s > 0, matters are slightly different. The state s > 0 problem is conditioned on the

estimate, rather than the true value, of the s−1 value function. Therefore, we have only

estimates V s(xj), not the actual value V s(xj). We write this estimate for the values

at the nodes as the vector Vs. The stage s basis coefficients are cs = (Φ′Φ)−1 Φ′Vs.

Our approximation of the value function at stage s is V̂ s(x) = φ(x)cs.

By using approximations, we replace the difficult problem of finding a function at

each stage, with the considerably simpler problem of finding a vector of coefficients.

Rather than having to store functions in memory, we only have to store vectors of

coefficients. Note also that interpolation matrix, Φ, does not vary over stages. That

matrix depends only on our choice of basis functions and of nodes, so we need to

compute the matrix (Φ′Φ)−1 Φ′ only once. Moreover, in the case where the basis

vectors Φi are orthogonal, the matrix Φ′Φ is a diagonal matrix and we can do without

matrix inversion.

At each stage we obtain the J values

asj ≡ arg max
{
U(a, xj) + βφ(g(a, xj))c

s−1} . (2.33)

It is important to note that, even if the initial condition for x equals a node, optimal

behaviour likely causes the next-period state variable to lie between nodes. Therefore,

we need the function approximation V̂ s(x) = φ(x)cs rather than just the vector Vs
j .



chapter 3

The optimal balance between

Mitigation and Adaptation

to Climate Change:

An analysis under uncertainty

3.1 Introduction

Climate change is all about uncertainty: uncertainty governing the natural processes

involved, uncertainty derived from its long-term scope and uncertainty on how agents

endogenise and react to those phenomena. Most IAMs (including DICE) are determin-

istic and way too complex to enable a proper incorporation of uncertainty. Monte-Carlo

methods are the most common approach to addressing uncertainty in the Integrated

Assessment literature. However, Monte-Carlo methods, as implemented in this strand

of literature, do not model decision making under uncertainty. They present a sensi-

tivity analysis that averages over deterministic simulations.

In the past some authors have managed to address uncertainty in the framework of

the DICE model. For instance, Kelly and Kolstad (1999, 2001) build a careful, recursive

implementation of the DICE-1994 model to analyse learning time in detail, but they

do not consider the separate contributions of uncertainty, learning and stochasticity

on near term optimal policies. Leach (2007) adopts a similar methodology to show

that learning about the carbon cycle slows down as additional uncertainty enters the

model. All these works represent pioneering contributions to the analysis of uncertainty

in the literature of climate change. A different set of papers introduce uncertainty

into non-recursive implementations of Integrated Assessment Models. In this spirit,

we find that Keller et al. (2004) introduce uncertainty and learning into an earlier

version of DICE. However, as noted in the earlier chapter, working with non-recursive

methods only allows us to deal with a finite (reasonably small) set of uncertain events.

For many applications, such as individual uncertain events, they deliver interesting

insights. However, these studies cannot replace comprehensive uncertainty evaluations
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using state of the art stochastic dynamic programming methods.

The quantitative analysis of optimal climatic policies under uncertainty requires

a recursive dynamic programming implementation of IAMs. Such implementations

are subject to the curse of dimensionality. Every increase in the dimension of the

state space is paid for by a combination of (exponentially) increasing processor time,

lower quality of the value or policy function approximations, and reductions in the

uncertainty domain. However, Traeger (2014) has recently delivered a state-reduced,

recursive dynamic programming implementation of the DICE model which, in its basic

specification, has only four state variables.1 This leaves us with some extra margin to

enrich the model with new features. Traeger’s methodology incorporates uncertainty

in every period and the decision maker solves for the optimal policy by reacting to the

anticipated future resolution of uncertain future shocks.

As emphasised in the earlier chapter, adaptation to climate change is key to confront

climate change impacts and the IPCC has made a plea for advancing in its comprehen-

sion and its integration within IAMs. In particular, adaptation would drive resources

away from mitigation, as it directly decreases the total damages of climate change.

Still, both strategies will remain complementaries because if the social planner does

not mitigate (curb) carbon emissions, the stock of carbon in the atmosphere could

become unmanageable and, as a consequence, so would global temperature.

Since both mitigation and adaptation must cohabit to fight climate change, a rel-

evant question would be whether or not investment in adaptation would buy time for

mitigating. In other words, we would like to know the optimal combination of mit-

igation and adaptation and determine its path. This combination is known in the

literature as the “optimal mix” and the IPCC has successively emphasised in their

AR4 (Klein et al., 2007) and AR5 (Mimura et al., 2014) the need for advancing in its

study. Using different frameworks, some authors, such as Tol (2005); Tulkens and van

Steenberghe (2009); Bosello et al. (2010); Auerswald et al. (2011); Antweiler (2011);

Ebert and Welsch (2012); Bréchet et al. (2013) or Markandya et al. (2014) have tried

to address the optimal combination of these two magnitudes reporting opposite views:

some find that adaptation may appear preferable, especially in developing countries

whereas the need for urgent mitigation has also been argued. The inherent message is

that their conclusions rest heavily on the assumptions behind their models and, thus,

seems difficult to give a clear answer to this question.

The objective of this chapter is, given an optimal composition of the mitigation-

adaptation strategies stemming from the deterministic results obtained in Chapter 2,

1Basically, this reduction is achieved by simplifying the carbon cycle and the temperature delay
equations.
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analyse how its optimal dynamics varies when uncertainty is allowed into our model.

To do so, we will introduce adaptation à la de Bruin in our model and allow for different

sources of uncertainty. Including uncertainty into the model may potentially distort

results as we already know them. For instance, Lecocq and Shalizi (2010) find on their

partial equilibrium model that the cost effectiveness of mitigation is found to increase

with regard to adaptation when uncertainty is introduced into their model.

Uncertainties hitting the model can be divided into four broad categories and an

example of each group is provided in this study. First, we identify uncertainties about

the value of the parameters of the model (epistemic). We will study how an unknown

value of climate sensitivity would affect optimal policies and other basic magnitudes.

Second, we allow the exogenous processes that govern the dynamics of the model to be-

have stochastically. We will present stochastic labour-augmenting technology growth

as an example. Third, we will include uncertainties in the way individuals (social

planner) learn from the past. In particular we will equip our model with Bayesian

learning, thanks to which policymakers have a certain prior about the value of certain

parameters of the model and update their beliefs in response to the observation of re-

alised variables. Fourth, we will study the possibility of the occurrence of catastrophes,

allowing for the existence of tipping points in an undetermined point in time.

The results from allowing for uncertainty in our framework are most of them qual-

itatively similar across experiments and aim at favouring mitigation with respect to

adaptation as a method of insurance against potentially future adverse scenarios. The

reason underlying this result is that the social planner fears the pernicious consequences

derived from an uncontrolled level of carbon in the atmosphere obtained as a result

of very adverse future scenarios. In future exercises, it would be reasonable to extend

this result to different adaptation mechanisms, like the one proposed by Bosello et al.

(2010), where anticipatory adaptation (modelled as a stock variable), reactive adapta-

tion (modelled as a flow variable) and accumulation of reactive adaptation knowledge

can be distinguished.

The remainder of the chapter is organised as follows. In Section 3.2 we will include

uncertainty generically into the AD-DICE model and state the Bellman equation. Sec-

tion 3.3 will draw some messages about the optimal mitigation-adaptation decision if

we are myopic about the value of climate sensitivity. In Section 3.4 we will study how

a stochastic technology growth affects our model. Section 3.5 will address how the

optimal mix varies if individuals learn over the years about the uncertain parameters

governing the model. Section 3.6 explores the possibility of having irreversible tipping

points that compromise the stability of the system. Finally, Section 3.7 concludes.
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3.2 The AD-DICE model under uncertainty

DICE deals explicitly with rational economic agents operating through time in stochas-

tic environments. In this setup, a decision maker must choose a sequence of actions

through time subject to some environmental restrictions. If the environment is sub-

ject to unpredictable outside shocks, it is clear that the best future actions depend

on the magnitude of these shocks. The way of deciding on the immediate action to

take as a function of the current situation is called a recursive formulation because it

exploits the observation that a decision problem of the same general structure recurs

each period.2 The use of recursive methods makes it possible to treat a wide variety

of dynamic economic problems, both deterministic and stochastic. The power of dy-

namic programming, relative to an alternative such as nonlinear programming, is most

evident with stochastic problems.

Our version of DICE resembles closely the stochastic dynamic programming imple-

mentation of DICE by Kelly and Kolstad (1999) and its posterior adaptation by Traeger

(2014). The main contribution of the latter is to reduce the number of states needed to

represent the climate side of the model without sacrificing its benchmark performance

in capturing the interaction between emissions and the increase in temperature. Such

reduction of the state space is crucial to allow for additional state variables needed to

capture uncertainty and avoid the curse of dimensionality.3 To model the adaptation

behaviour, we rely on the work by de Bruin et al. (2009), which allows us to separately

choose between mitigation and adaptation at every optimisation stage. The reader

should refer to Figure 2.1 of Chapter 2 to have a glimpse of the detailed workflow of

the model. The equations and processes governing the model are fully described in

Section 2.2.

Under uncertainty, the social planner optimal sequence of decisions has to take

into account not only the current realisation of the uncertain variables, but also the

expected future values of those random variables. This is represented in our value

function by including additional states summarised in the vector Φt. We then would

write the value function as V (kt,Mt, Tt,Φt, t),

V (kt,Mt, Tt,Φt, t) = max
ct,µt,pt

Lt
c1−η
t

1− η
∆t+ βt,∆tE [V (kt+∆t,Mt+∆t, Tt+∆t,Φt+∆t, t+ ∆t)] ,

(3.1)

which is an augmented version (for uncertainty) of equation (2.24).4

2Recursive methods in economics were extensively introduced by Stokey et al. (1989).
3We cut the number of state variables almost to half with respect to the original DICE formulation.
4Again, bear in mind that this expression is the normalised version of the Bellman equation, in
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We solve the model using the algorithm presented in Appendix 2.B. Expectations

are approximated numerically using the procedure described in Appendix 3.B. We run

the resulting code in Matlab using the compecon optimiser as described in Miranda

and Fackler (2002). Since each of the optimisation at the different Chebychev nodes is

independent conditional on the time step, we can compute each of them independently.

Hence, we make use of the Parallel Programming Toolbox in Matlab to parallelise that

process so that the whole process speeds up nearly 4 times.5 Once solved, we can

quickly simulate a large set of runs and depict statistical properties.

3.3 Uncertainty about climate sensitivity

A paradigmatic source of uncertainty is that arisen due to imperfect knowledge of the

parameters governing the dynamics of the model. We call it parametric (or epistemic)

uncertainty. The present system is represented by a very large set of parameters.

One of those whose calibration arises more controversy is climate sensitivity. The

reader should recall that climate sensitivity is the equilibrium temperature response to

doubling of atmospheric CO2 concentration with respect to pre-industrial levels and

is represented by s in our model. Despite significant advances in climate science, the

“likely” range has been 1.5◦C to 4.5◦C for over three decades, with a “most likely”

value of 3◦C. In 2007, the IPCC narrowed the likely range to 2-4.5◦C. It reversed

its decision in 2013, reinstating the old range. The AR5 also removed the 3◦C “most

likely” value.

We start with a simple but powerful exercise. The social planner ignores the actual

value of climate sensitivity but has a guess of it. She solves the problem as if this

guess was the actual value of s. In particular, she assumes that climate sensitivity

takes a deterministic value of 3.08 (borrowed from the deterministic scenario).6 Then,

we present a sensitivity analysis of our results by assuming that the actual climate

sensitivity values stem from the realisation of the following random variable

s̃ ∼ N(µs, σ
2
s)

centred at µz = 3.08 and standard deviation σz = 2.7%. Typically, this parameterisa-

tion will yield values belonging to the interval (1.5,4.5), which are claimed by the IPCC

which capital is expressed in effective labour units. Without normalising capital, we would need a
much larger state space for capital to cover at least a reasonably long time horizon.

5In a Windows 10, Intel i7-2600 @3.40GHz PC. Matlab R2011a.
6The rest of parameters take the same values as in the benchmark specification. Please refer to

Tables 2.1 and 2.2 in Chapter 2 for further details.
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as “likely” values of this parameter. After solving the problem, we run a set of N = 100

simulations projecting the model forward for each of the respective realised values of

climate sensitivity, taking optimal rules as fixed. This exercise tries to illustrate how

outcomes behave over time if the social planner has a guess about the value of climate

sensitivity and this guess does not get modified over time. In other words, the social

planner is myopic about the true value of s.

A description of some of the basic results can be found in Figure 3.1. The model

features essentially the basic properties of the standard AD-DICE model but now the

degree of variability of the basic magnitudes increase in response to climate sensitivity

miscalculations. As depicted in the various panels of Figure 3.1 the main variables of

the model behave similarly to the benchmark specification and most of them fluctuate

symmetrically around the median values.

Lower (higher) climate sensitivity will decrease (increase) mitigation relative to

adaptation. The rationale behind is that if emissions cause less climate change, there

will be lower damages. This will lead to lower levels of mitigation and adaptation.

These latter results are gently summarised in Figure 3.2. Specifically, a slow climatic

response diverts resources to instantly adapt to climate change in the short-run (more

than half of the resources are devoted to adaptation) although the long-term optimal

behaviour still yields a stable equilibrium of the mix (60% mitigation - 40% adaptation).

Conversely, if high climate sensitivity applies, mitigation is relatively more beneficial

to combat climate change. As a result, a ratio of 75%-25% quickly becomes optimal.

In this case, we can find optimal full abatement of emissions in the very long run.

3.4 Stochastic technology growth

Now we present an analysis of the optimal mix between mitigation and adaptation when

fundamental processes governing the dynamics of the model are stochastic. Among

these sources of uncertainty, we can find randomness in shocks affecting the growth of

technology, the accumulation of carbon, the evolution of temperatures, and so forth.

One of the processes traditionally considered to be crucial for climatic outcomes is

by far the growth in total factor productivity (TFP). The reason is that TFP is the

main driver of economic growth in the long run, and output tends to dominate emissions

trends and therefore climate change. In this experiment, we will assume that the rate

of technological progress is uncertain. The technology level enters the Cobb–Douglas

production function and determines the overall productivity of the economy. A shock

in the growth rate permanently affects the technology level in the economy. The

technology level in the economy, At, follows the equation of motion
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Ãt+1 = At exp[g̃A,t] with g̃A,t = gA,0 exp[δAt] + z̃t. (3.2)

3.4.1 Normalised Bellman equation under stochastic technol-

ogy growth

As in the benchmark formulation, it is convenient to use the normalised Bellman equa-

tion (3.1) to ease the numerical calculations. In this respect, we follow closely Jensen

and Traeger (2014). To express variables in effective labour units, we normalise by the

deterministic technology level, Adet.7 Its dynamic behaviour responds to the following

equation

At+1 = Adett exp[ḡA,t] with ḡA,t = gA,0 exp[δAt].

If we define at = At
Adett

as the deviation of the current technology level away from its

respective deterministic value, then the technology deviation at t+ 1

ãt+1 =
Ãt+1

Adett+1

=
exp (g̃A,t)At

exp (gA,t)Adett
= exp (z̃t) at

will be a random variable that will lead us to a new normalised Bellman equation

V ∗(kt,Mt, Tt, at, t) = max
ct,µt,pt

c1−η
t

1− η
∆t+ βt,∆tE [V ∗(kt+∆t,Mt+∆t, Tt+∆t, ãt+∆t, t+ ∆t)] .

After this renormalisation some equations will differ slightly from those presented in

the benchmark formulation of the model. In particular, the gross product per effective

unit of labour (previously, ygrosst = kκt ) now reads

ygrosst = a1−κ
t kκt ,

where it now incorporates the stochastic deviations of technology away from its deter-

ministic level. Accordingly, yearly CO2 emissions derived from industrial emission will

change so that total CO2 emissions now follow

Et = (1− µt)σtAdett a
(1−κ)
t Ltk

κ
t +Bt,

where Bt represents total emissions from land use change. The rest of equations hold

as presented in Section 2.2.

7Adet ≡ level of technology in the certainty scenario (zt = 0, ∀t)
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Calibration of the iid technology growth shock

Our set of simulations analyse the consequences of an iid shock

z̃t ∼ N(µz, σ
2
z).

Following Jensen and Traeger (2014), we set the standard deviation to σz = 2.6%,

a somewhat conservative value if compared with the usual calibration of iid technology

growth shocks in the empirical macro literature, which corresponds to twice the initial

technology growth rate in the deterministic scenario.

For the sake of comparison between specifications, the mean of the technology

shock, µz, is calibrated so as to have on average a similar technology path as in the

deterministic scenario. Still, this calibration displays enough variability once different

technology paths are simulated.

Ãt+j = ãt+jA
det
t+j = exp (z̃t+j−1) ãt+j−1A

det
t+j

= exp (z̃t+j−1 + z̃t+j−2) ãt+j−2A
det
t+j

= exp

(
j−1∑
j′=0

z̃t+j′

)
atA

det
t+j.

Then

E
[
Ãt+j

]
= E

[
exp

(
j−1∑
j′=0

z̃t+j′

)
atA

det
t+j

]

= exp

(
j−1∑
j′=0

(
µz +

σ2
z

2

))
atA

det
t+j

= exp

(
j

(
µz +

σ2
z

2

))
atA

det
t+j.

Hence, if we set µz = −σ2
z

2
, we have that

E
[
Ãt+j

]
= atA

det
t+j,

which is not more than the deterministic value of technology at time t+ j.
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3.4.2 Main results

In Figure 3.3 we observe the overall results after running 100 simulations with σz =

2.6% and µz = 3.38 · 10−4. As it emerges from the upper left panel of Figure 3.3,

technology deviations do not represent a major force to deviate from the optimal mix

under a potential deterministic scenario.8 Only subtle changes in response to transitory

deviations are observed in the optimal allocation between mitigation and adaptation.

As a consequence, the observed atmospheric CO2 stock gravitates also around the

deterministic values, as noted in Figure 3.3b. The bottom panels of Figure 3.3 depict

the evolution of the stock of capital in our simulated states of the world, which respond

directly to the uncertain path of technology.

Meanwhile, Figure 3.4 compares the deterministic optimal path of the mix with

the median values resulting from our simulated series. In general, we may state that

including uncertainty in the technology level favours adaptation as it stems from the

parallel shift of the mix downwards. Specific levels of the mix will depend on the

magnitude of the shocks.

The total amount of resources allocated to mitigation are described in Figure 3.5a.

Abatement expenditure is measured as a fraction of gross output. This variable is a

function of the emission control rate (abatement rate). This abatement rate charac-

terises the percentage of emissions avoided under a climate policy, as compared to a

laissez-faire world. As observed, total mitigation decreases relative to total output be-

cause positive technology shocks incline the social planner to produce more and thus,

release more CO2 in good years. Accordingly, the median level of CO2 in the atmo-

sphere is slightly larger along time, as it can be seen in Figure 3.5b, with CO2 peaking

at a higher level, later than in the deterministic case.

3.5 Learning about uncertain climate sensitivity

In this section we will address how optimal decisions vary if individuals learn over the

years about the uncertain parameters governing the model. Similarly to Section 3.3 we

will assume that climate sensitivity is not known but in this case we will have a guess

of its value.9 This guess will be updated at each iteration through Bayesian learning

once the stock of carbon and temperature are observed. In particular we will assume

8Each point in these pictures is visually weighted according its probability density, that is, dark-
est shaded areas represent locations most probably visited whereas lighter areas denote less likely
outcomes.

9Recall that climate sensitivity captures the equilibrium warming from doubling the CO2 concen-
tration with respect to pre-industrial levels.
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that the social planner is unsure about the true value of climate sensitivity, s, but holds

the following prior

s̃0 ∼ Π(s) = N (µs,0, σ
2
s,0).

In addition to its uncertain nature due to unknown climate sensitivity, atmospheric

temperature is also stochastic, insofar as it responds to random weather fluctuations.

These weather fluctuations are normally distributed with mean zero. Thus, for a given

value of climate sensitivity, s, temperature behaves according to the following law of

motion

T̃t+1 = (1− σforc)Tt + σforcs

[
ln Mt

Mpre

ln 2
+
EFt
ηforc

]
− σocean4Tt + ε̃t. (3.3)

For a given value of s, since ε follows a normal distribution, so will do temperature

T̃t+1 ∼ N (µT,t+1(s), σ2
T ),

with variance σ2
T , known and exogenous.10

The temperature mean is obtained from taking expectations in equation (3.3) is

µT,t+1 = sχt(Mt, t) + ξt(Tt, t),

where

χt(Mt, t) = σforc

(
ln Mt

Mpre

ln 2
+
EFt
ηforc

)
,

ξt(Tt, t) = (1− σforc)Tt − σocean4 Tt.

Assuming the above prior and its respective updating rule, a predictive rule for

temperatures can be obtained.11 In particular, the mean of the prior at time t+ 1 is

µs,t+1 =
χ2
tσ

2
s,t
T̂t+1−ξt

χt
+ σ2

Tµs,t

χ2
tσ

2
s,t + σ2

T

,

whereas the variance is updated through

10Empirical estimates suggest annual volatility in global mean temperature in σ2
T = 0.042.

11See Jensen and Traeger (2013) to check the full derivation of these results.
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σ2
s,t+1 =

σ2
Tσ

2
s,t

χ2
tσ

2
s,t + σ2

T

. (3.4)

As a result, the decision maker learns faster the lower the temperature stochasticity

and the larger the carbon stock. We must add to the state variables governing the

model (k,M, T and t) those responsible for updating the climate sensitivity prior Π(s),

namely, µs,t and σ2
s,t. Meanwhile, the predictive equation of temperature governs the

realisation of temperature in t+ 1 accounting for stochasticity and climate sensitivity

uncertainty. More precisely, T̂t+1 ∼ N (χtµs,t, χ
2
tσ

2
s,t + σ2

T ).

The Bellman equation reads now as follows

V ∗(kt,Mt, Tt, t, µs,t, σ
2
s,t) = max

ct,µt,pt

c1−η
t

1− η
∆t (3.5)

+ βt,∆tE
[
V ∗(kt+∆t,Mt+∆t, T̃t+∆t, t+ ∆t, µ̃s,t+∆t, σ̃

2
s,t+∆t)

]
.

The new Bellman equation has six state variables: three physical state variables

(k,M, T ) and three informational variables (t, µs,t, σ
2
s,t) that characterise the state of

the system.

As in the previous section, we simulate the system forward 300 steps using the

optimal control obtained in the estimation phase. In this exercise, we assume that

the social planner holds an accurate prior about the mean of climate sensitivity equal

to its actual value (µs,0 = 3) but she is slightly unsure about her belief (σ2
s,0 = 3).

These beliefs are updated each period so that the social planner gradually learns about

how correct are her beliefs through the observation of realised variables. Additionally,

each year an exogenous, additive shock εt ∼ N (0, σ2
T ) affects global temperature, with

σ2
T = 0.042. Random fluctuations of temperature will add an extra degree of complexity

to how the planner disentangles the actual value of climate sensitivity.

The compendium of simulated optimal mix strategies are depicted in Figure 3.6.

The risk-averse social planner now decides to mitigate relatively more as she is uncer-

tain about whether the desired mitigation level will be able to cope with the expected

increase in temperatures. As the prior becomes more certain (decrease in the prior vari-

ance shown in Figure 3.7) the optimal mix returns to more balanced values. However,

it does not recover the values shown in the deterministic case. The median behaviour

of the optimal mix is shown in Figure 3.8, where a notable shift in the relative im-

portance of mitigation is observed. Having more accurate guesses of actual climate

sensitivity let the social planner calculate more precisely real damages, which entitles

her to fighting more efficiently against them. A direct implication of the above is that
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total mitigation increase rapidly during the first years after 2010 (see Figure 3.9a). The

planner assigns a greater amount of resources to control emissions, as compared to the

deterministic case. This desire for early strong mitigation has a direct impact on CO2

concentrations, as drawn in Figure 3.9b, where a maximum is observed around year

2150 at a level of approximately 1.400 gigatonnes of carbon. After that point, CO2

concentration start gradually to decrease.

3.6 Tipping points

The evolution of climate variables entails different sources of uncertainty inherent to

the climate system. Despite most climate change models predict an overall robust in-

crease in global temperatures at the end of the present century, it is not excluded that

the occurrence of certain climatic phenomena could provoke a series of abrupt, sudden

changes in the system that may end being non-reversible. Tipping points are under-

stood as irreversible shifts in system dynamics that occur upon crossing a threshold

in the state space. In a climate change context, tipping points have been modelled

differently by several authors. Some examples are the work by Cai et al. (2015) and

Diaz (2015). We will follow the approach by Lemoine and Traeger (2014), in which

the social planner does not know the exact location of this threshold. The probability

of a tipping point occurring, known as the hazard rate, is endogenous and depends on

the evolution of the state variables, which in turn depends on policy choices as well

as on the stochastics governing the system. The social planner learns that regions

that she has already visited are free of tipping points. Crossing the threshold shifts

the world from the pre-threshold regime to a post-threshold regime with permanently

altered system dynamics. Optimal pre- and post-threshold policies together determine

the welfare loss triggered by the tipping point.

We evaluate a tipping point of prominent concern in the climate change literature:

this tipping point increases the climate feedbacks that amplify global warming, that is,

it increases the effect of emissions on temperature. In particular climate sensitivity will

shift from 3◦C after doubling CO2 concentrations in the pre-threshold regime to 4◦C

in the post-threshold regime. The new dynamics can include melted ice sheets, large

methane releases, or disruptive forest ecosystems; lowering temperature would not undo

any of these changes. Optimal policy in the pre-threshold regime must consider its effect

on both the pre- and post-threshold value functions, but once the state variables cross

the threshold, optimal policy depends only on post-threshold dynamics. Therefore,

we solve the model recursively, starting with the post-threshold problem and then

substituting the solution into the pre-threshold problem.
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The system passes from the pre-threshold level (ψt = 0) into the post-threshold

regime (ψt+1 = 1) when cumulative temperature change Tt+1 crosses an unknown

threshold, T̂ . We assume an uniform prior distribution for thresholds. This distribution

recognises that more warming entails more threshold risk. The uniform distribution

for T means that every temperature between the maximum temperature previously

reached and an upper bound T̄ has an equal chance of being the threshold. The

probability of crossing the threshold between periods t and t + 1 conditional on not

having crossed the threshold by time t is

h(Tt, Tt+1) = max

{
0,

min
{
Tt+1, T̄

}
− Tt

T̄ − Tt

}
. (3.6)

This expression is the hazard of crossing the tipping point. As the world reaches

higher temperatures without reaching a threshold, the social planner learns that the

threshold is above the current temperature and updates his beliefs by moving proba-

bility density from the newly safe region to the remaining unexplored temperatures.

For the sake of clarity in the exposition, let summarise our set of state variables in

the vector S whereas our control variables will be denoted by x. In the post-threshold

world the Bellman equation would read

V ∗1 (St) = max
xt

u(xt, St) + βt

∫
V ∗1 (St+1)dP, (3.7)

whereas the pre-threshold Bellman equation reads as follows

V ∗0 (St) = max
xt

u(xt, St) + βt

∫
[(1− h(Tt, Tt+1))V ∗0 (St+1) + h(Tt, Tt+1)V ∗1 (St+1)] dP.

(3.8)

This maximisation problem will be subject to the usual restrictions, now described

by their compact notation

St+1 = g1(xt, εt, St) and xt ∈ Γ(St),

where the first equation describes the law of motion of the state variables and the

second term assures that our control variables will belong to a feasible set.12 The novel

aspect here is that the law of motion of the model’s state variables now depends on the

vector εt of iid shocks, whose distribution is characterized by the probability measure

P .

Because of the stochasticity in the equations of motion, we take expectations over

12These restrictions are described with detail in chapter 2.
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the next period’s value functions and over the hazard rate (via the integral). We

approximate expectations using a Gauss-Legendre quadrature rule with 8 nodes. Once

we have solved for V1 in (3.7), we find V0 as the fixed point in (3.8).

3.6.1 Main results

The first step of this exercise involves the resolution of the Bellman equation under

the possibility of crossing a tipping point that triggers worse environmental conditions

(we would pass from s = 3 in the pre-threshold world to s = 4 after the tipping point

is hit). With this experiment we try to estimate the effect that the sole inclusion

of this undetermined trigger point may have in the inferred optimal policies, paying

special attention to the composition of the optimal mix. We will check whether the

social planner insures herself against this potential danger. Accordingly, the Bellman

equation that the planner faces takes the form

V ∗0 (St) = max
xt

u(xt, St) + βt [(1− h(Tt, Tt+1))V ∗0 (St+1) + h(Tt, Tt+1)V ∗1 (St+1)] , (3.9)

where V ∗1 represents the optimal response in the post-threshold scenario and V ∗0 cor-

responds to the optimal pre-threshold response if we take into account the possibility

of an undetermined tipping point in time.13 We approximate both value functions,

feeding the values of V ∗1 into the resolution of V ∗0 and then simulate the system as if

the tipping point never occurs. We also assume expected draws of the weather shock.

The mere inclusion of the possibility of tipping points in the model result in an increase

of the mitigation motive as shown in Figure 3.10. In this way, the social planner pre-

vents the occurrence of the tipping point by mitigating relatively more as compared to

the benchmark scenario. Total mitigation increases with respect to the deterministic

scenario as a result of facing every period the possibility of the system collapsing. This

behaviour can be observed in Figure 3.11, where total expenditure in abating emissions

relative to output is permanently higher than in the deterministic case.

3.6.2 Stochastic temperature

In the next experiment, we include a new source of uncertainty represented by an ex-

ogenous random additive shock which impacts global temperatures each period. This

shock will be distributed as ε̃Tt ∼ N (0, σ2
Tε), with σ2

Tε = 0.042.14 Each period, exoge-

13The post-threshold scenario involves an increase of climate sensitivity from 3 to 4.
14Further details in Lemoine and Traeger (2014).
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nous weather fluctuations affect global atmospheric temperatures and thus, the law of

motion of temperatures behaves analogously to (3.3). The general Bellman equation

described in (3.8) applies and temperature is now stochastic.

In general, and qualitatively close to the results presented in Section 3.5, the social

planner decides to react to the uncertainty created by both tipping points and stochastic

temperatures by favouring emissions abatement with respect to adaptation to climate

change impacts. This behaviour is clearly visible in Figure 3.12, where an upward

parallel shift of the optimal mix curve is observed. Optimal mitigation grows steadily

relative to adaptation over the first years until it stabilises in later years around a range

of 75% of climate investments.

3.6.3 Stochastic damage

Lastly, we explore the possibility of facing an uncertain damage function. This would

be the equivalent of having an imperfect estimate of the functional form of the damage

function. In this sense, we enable some deviations in its realisation each period. With

this experiment, we try to measure the degree of sensitivity of the social planner against

uncertainties in the effect on output of temperature changes. Conceptually, this is very

similar to the case where we are unsure about the true value of climate sensitivity

but this time the effect is manifested through the damage function. Hence, we modify

the shape of the climate damage function and let a multiplicative random shock in

temperature intervene each period. The new gross damage function reads

GDt = 1 + b1(ε̃DtTt)
b2 ,

where the independent, normally distributed multiplicative shock ε̃Dt ∼ N (1, σ2
Dε) with

σ2
Dε = 0.0068.15

The results are qualitatively analogous to those derived with stochastic tempera-

tures as it can be observed in Figure 3.13. In this case, though, given the calibration of

the damage shock, the planner can accommodate easily the variations in the damage

function so that results are numerically close to those presented in the deterministic

case. But the results of this exercise share most of the common features of the previ-

ous simulations, namely, in the presence of uncertainty in the processes governing the

dynamics of the model, the social planner prefers to deviate more resources to long-

lasting mitigation with respect to more instantaneous but short-lived adaptation. The

risk-averse nature of the social planner acts in favour of less volatile future consump-

tion scenarios. Familiarly to other scenarios where the planner is inclined to intensively

15See Lemoine and Traeger (2014) for further details on the calibration of this parameter.
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mitigate, the resulting concentration of CO2 in the atmosphere peaks earlier and at a

lower level, compared to our deterministic benchmark scenario. This can be seen in

Figure 3.14.

3.7 Conclusion

Incorporating new features into IAMs is highly desirable but comes at a cost. In

particular, it makes most of these models suffer from the curse of dimensionality. To

overcome this problem we adapt a recent methodology proposed by Traeger (2014)

which casts the well established Nordhaus’ DICE model in a recursive way, making it

particularly suitable for uncertainty analysis. At the same time, it reduces the state

space to only four state variables, thus, making the model accessible to be solved

in a regular computer. By adopting this methodology, we echo the IPCC’s call for

greater integration of adaptation within Integrated Assessment modelling and extend

the original DICE model by incorporating adaptation à la de Bruin, that is, specifying

adaptation as a separate decision variable. Then, we perform a thorough analysis of the

optimal balance between mitigation and adaptation under various stochastic scenarios.

In a first exercise, we solve the model for an assorted amount of different climate

sensitivities. Recall that climate sensitivity is the reaction of the system, in terms of

mean air temperature, to a doubling of the CO2 concentration. Climate sensitivity

is an unknown parameter, reportedly said to show a positive value around 3. We

confirm that climate sensitivity is crucial in determining how the system behaves.

Very high values cannot be easily accommodated by efficiently mitigating nor adapting

damages. On a second exercise, we assume a random path for technology. Technology

enters directly into the production function and is reported to be the major source

of distortion in the basic properties of the DICE model. Our results suggest that,

indeed, technology growth amounts to be a great source of distortion. If we look at

the mitigation-adaptation mix, we can infer that adaptation is more efficient in coping

with an uncertain technology scenario.

Next, we include the possibility of dealing with an unknown climate sensitivity.

The planner, though, holds a prior of its value and learns gradually about its certain

value through time thanks to the observation of realised climatic variables. Hence, we

equip our model with Bayesian learning about climate sensitivity. Consequently, the

observation of realised temperature will be itself imperfect and so will be the updates

of our priors. The results show that, the higher the degree of ignorance of the social

planner about the true value of climate sensitivity (higher variance), the more she will

try to protect herself with the help of more mitigation relative to adaptation.
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Lastly, we feed our model with a very interesting feature in the context of climate

change: the possibility of crossing a determined (unknown) temperature threshold or

tipping point after which the dynamics of the system behaves notably different. In our

example, this change in the dynamics is manifested by an increase in climate sensitivity

from 3 to 4. We analyse the effect in the optimal mix under three different scenarios:

deterministic, stochastic temperatures and stochastic damages. The results are all

qualitatively similar and all aim at favouring mitigation with respect to adaptation as

a method of insurance against potentially future adverse scenarios.

Only a few examples about the dynamically optimal strategy to fight climate change

under uncertainty can be found in the literature and their results are qualitatively very

similar to ours. Antweiler (2011) finds that the optimal mix would depend crucially

on the cost of adaptation relative to mitigation (as we found in Chapter 2) and on

the sensitivity of climate change and existence of tipping points. Similarly to us, this

author also finds that uncertainty about the values of the latter would bias the policy

choice. In particular, an expected slow-speed, slow-risk climate change would deviate

resources from mitigation to adaptation and high risk scenarios would tilt out strategy

from adaptation to mitigation. Auerswald et al. (2011), on the other hand, do not

analyse the temporal dimension of the problem but, in accordance to our findings, they

find that uncertainty about the future damages from climate change forces countries to

invest in adaptation and mitigation measures as two alternative forms of self-insurance

complements.

There exists great debate on the grounds for prioritising efforts on mitigation rel-

ative to adaptation. According to our results, a risk-aware (risk-averse) global pol-

icymaker should allocate more resources, but not only, to mitigation efforts to fight

climate change. This result comes from the interplay of the huge inertias and delays

involved in the Earth system and the risk associated to uncertain, catastrophic events

in the distant future. It is true, however, that the marginal impact of adaptation in-

vestment may differ across countries (regions). Typically, lower developed countries

would benefit greatly from climate change adaptation measures and this would affect

total climate damages. We would need to model different sensitivities to adaptation

investments to embed this feature in our model. An adaptation of our methodology

applied to the regional RICE model (Nordhaus and Yang, 1996) would be useful for

this purpose.

This study represents a new approach to the dynamic analysis of adaptation to

climate change within a simplified recursive IAM fed with various potential sources

of uncertainty. Many other additional features can be further incorporated into this

model: uncertainty in the parameters governing the damage function, alternative dam-
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age function specifications, persistent effects of technology shocks, and so forth. Addi-

tionally, different types of adaptation could be jointly modelled. For example, Bosello

et al. (2010) construct a more involved framework in which they distinguish between

anticipatory adaptation (modelled as a stock variable), reactive adaptation (modelled

as a flow variable) and accumulation of reactive adaptation knowledge. A sensitivity

analysis of these results in response to different attitudes of the social planner towards

risk could also be worthwhile. These extensions are left for future research papers.
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(a) CO2 level (b) Abatement rate)

(c) Investment rate (d) CO2 emissions)

Figure 3.1: AD-DICE (uncertain climate sensitivity)
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Figure 3.2: Mitigation-Adaptation mix (uncertain climate sensitivity)

This figure depicts the median (N = 100) optimal response of the social planner. The mix
is defined as [mitigation/(mitigation+adaptation)]*100.
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(a) Mitigation-Adaptation mix (b) CO2 level

(c) Capital (d) technology deviation)

Figure 3.3: AD-DICE (uncertain technology)

All pictures feature shaded areas according to probability density. The mix is defined as
[mitigation/(mitigation+adaptation)]*100.
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Figure 3.4: Mitigation-Adaptation mix (deterministic versus stochastic technology
growth)

This figure depicts the median (N = 100) response of the social planner against the optimal
response under the benchmark model. Each period technology deviates from its deterministic
path according to an additive shock of standard deviation σz = 2.6% and mean µz = 3.38 ·
10−4.

(a) Abatement expenditure (b) CO2 level

Figure 3.5: Total mitigation and CO2 concentration (deterministic versus stochastic
technology growth)

This figure describes the median (N = 100) time path of total abatement expenditure (left)
and CO2 concentration in the atmosphere (right) against their optimal path under the bench-
mark (deterministic) model. Each period technology deviates from its deterministic path
according to an additive shock of standard deviation σz = 2.6% and mean µz = 3.38 · 10−4.
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Figure 3.6: Mitigation-Adaptation mix (Bayesian learning about climate sensitivity)

This figure depicts the optimal paths of the mitigation-adaptation mix after running N = 100
simulations. Lines are shaded according to its probability density. The mix is defined as
[mitigation/(mitigation+adaptation)]*100.

(a) Prior mean (b) Prior variance

Figure 3.7: Bayesian learning. Evolution of priors
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Figure 3.8: Mitigation-Adaptation mix (deterministic versus Bayesian learning)

This figure depicts the median (N = 100) response of the social planner against the optimal
response under the benchmark model. The planner holds an initial prior centred at the true
value µs,0 = 3 and variance σ2

s,0 = 3. In addition temperatures oscillates each period in
response to a shock of mean 0 and variance σ2

T = 0.42.

(a) Abatement expenditure (b) CO2 level

Figure 3.9: Total mitigation and CO2 concentration (deterministic versus stochastic
Bayesian learning)

This figure describes the median (N = 100) time path of total abatement expenditure (left)
and CO2 concentration in the atmosphere (right) against their optimal path under the bench-
mark (deterministic) model. The planner holds an initial prior centred at the true value
µs,0 = 3 and variance σ2

s,0 = 3. In addition temperatures oscillates each period in response
to a shock of mean 0 and variance σ2

T = 0.42.
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Figure 3.10: Mitigation-Adaptation mix (deterministic versus tipping points)

We simulate a path that happens to never cross a threshold in order to see how the social
planner adjusts to the possibility over time. Results are for T = 3◦C.

Figure 3.11: Optimal abatement expenditure (deterministic versus tipping points)

This figure describes the median (N = 100) time path of total abatement expenditure against
their optimal path under the benchmark (deterministic) model. We simulate a path that
happens to never cross a threshold in order to see how the social planner adjusts to the
possibility over time. Results are for T = 3◦C.
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Figure 3.12: Mitigation-Adaptation mix (deterministic versus tipping & stochastic
temperature)

This figure depicts the median (N = 100) response of the social planner against the optimal
response under the benchmark model. We simulate a path that happens to never cross a
threshold in order to see how the social planner adjusts to the possibility over time. Results
are for T = 3◦C.
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Figure 3.13: Mitigation-Adaptation mix (deterministic versus tipping point & stochas-
tic damage)

This figure depicts the median (N = 100) response of the social planner against the optimal
response under the benchmark model. We simulate a path that happens to never cross a
threshold in order to see how the social planner adjusts to the possibility over time. Results
are for T = 3◦C.
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Figure 3.14: CO2 concentration (deterministic versus tipping point & stochastic dam-
age)

This figure describes the median (N = 100) time path of CO2 concentration in the at-
mosphere against the optimal path of CO2 under the benchmark (deterministic) model. We
simulate a path that happens to never cross a threshold in order to see how the social planner
adjusts to the possibility over time. Results are for T = 3◦C.
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3.B Approximating expectations in the AD-DICE

model

In a generic way, the introduction of uncertainty in our model boils down to adopting

a stochastic equation of motion for our state variables, x, such that, at time τ , their

law of motion is given by

xτ+1 = g(aτ , xτ , ετ ),

which replaces the deterministic equation of motion xτ = g(aτ , xτ ), as presented in

Appendix 2.B. Here, ετ is the time τ realisation of an iid random variable with known

distribution. The dynamic programming equation reads now as

V s(x) = max
a
Eε
{
U(a, x) + βV s−1(g(a, x, ε))

}
.

The solution to this functional equation proceeds as in the deterministic case, except

that now we have to take expectations at every stage. If ε is distributed continuously,

Gaussian quadrature presents an efficient approximation to the expectation integral.

The L quadrature nodes and the L weights in the sum are selected to match the first

2L moments of the distribution

∫
Z

zkp(z)dz =
L∑
l=1

ωlx
k
l for k = 0, . . . , 2L− 1.

Hence we approximate the expectation

Eε
{
U(a, x) + βV s−1(g(a, x, ε))

}
≈ U(a, x) + β

L∑
l=1

ωlV
s−1(g(a, x, εl)).

Given an estimate of the value function at stage s−1, V̂ s−1(x) = φ(x)cs−1, at stage

s we obtain

V s
j = max

a
U(a, x) + β

L∑
l=1

ωlφ(g(a, xj, εl))c
s−1.

We calculate the stage s basis coefficients cs as described in the (Value) Function

approximation method shown in Appendix 2.B to obtain an estimate of the stage s

value function, V̂ s(x) = φ(x)cs, and proceed to stage s + 1. This strategy goes on

recursively up to a desired break criterion for the vector of coefficients, c.16

16We set this break criterion at 10−4.





Concluding Remarks

This thesis studies the implications of the relation between economies and the environ-

ment paying attention to the effects in both directions. On the one side, it measures

the effects in the productive sector of the change in weather variables that is taking

place in recent years. On the other side, it assesses how different decisions about how

to deal with climate damages impacts the environment. It also studies the process of

adaptation of climate damages by human decisions and tries to measure its degree of

importance in absorbing climate change damages.

The first chapter, using a sample of European regions, unveils new evidence in

favour of how ongoing rising temperatures harm both the level and the ability to grow

of developed economies. In accordance with other authors, it also shows how this

negative effect is exacerbated in relatively poor regions. In light of this, policy makers

should account for regional heterogeneity when environmental policies are formulated

at a large scale. This heterogeneity should also be borne in mind when the interactions

between climate and the economy are modelled, for instance, in IAMs. Since climate

change is usually accompanied by extreme weather events, the existence of weather

non-linear effects in productive economies should be tested. At the same time, micro

evidence suggest that fundamental productive units exhibit highly non-linear responses

to local temperatures, as suggested in Graff Zivin and Neidell (2014). This suggests a

new avenue of research that will be covered in future projects. In particular, we will

follow the techniques employed in Burke et al. (2015) for the U.S. to our sample of

European regions.

Closely related to the previous topic, in a future project, it is my aim to study the

implications in real economies of other phenomena usually associated to climate change,

like droughts. Europe has experienced drought episodes increasingly over the past

decades. These ever more frequent events could pose threats to Europe’s food security

and to the stability of the domestic agri-food market. To assess this statement we first

have to carefully measure the net effect of recent genetic, agronomic and environmental

changes on drought sensitivity of crops. This remains an open empirical question (some

positive and some negative effects). An obstacle to measuring progress in farmers’ fields

has been lack of accurate field-level data on both environmental conditions and yield

performance that span a range of drought conditions and time.

Lobell et al. (2014) have recently developed a similar study applied to the corn belt
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in the U.S. Midwest. They identify that, despite crop yields have generally increased

over the studied period thanks to agronomic changes in plants’ drought tolerance,

the sensitivity to droughts of some crop varieties, like maize, is greater now than it

was at the beginning of the sample. A similar response of European crops could be

expected but many heterogeneities could arise due to different geographic, agronomic,

or productive motives. My study will shed light onto the reactivity of European-

based fields to drought events. I will also estimate the private adaptation potential of

crop fields to droughts by interpreting the difference between the impacts of climate

change projected using the short-run (limited adaptation) and long-run (substantial

adaptation) response curves, as presented in Lobell and Moore (2014, 2015).

As learnt from the first chapter, great spatial disaggregation is key because some

areas are more prone to suffering from drought events due to geographic and orographic

characteristics. At the same time, some crop varieties will bear more efficiently with

abrupt changes in average climate patterns. Hence, deploying my study at the finest

disaggregation level available is crucial to obtain meaningful results.

As of the next two chapters, I study different decision bundles about how to deal

with climate change impacts using an IAM. I put special emphasis on how allowing for

uncertainty may alter those decisions. The methodology employed in these chapters

show some potential benefits and advantages with respect to the traditional way of

casting and solving the DICE model, namely, it is not sensitive to the specification of

the terminal conditions and provides us with the policy functions to run alternative

simulations. Also, it sets the perfect environment to include further dimensions in the

model. In particular, it enables us to properly include different types of uncertainties

and/or stochastic behaviour of certain variables and parameters.

This is done in Chapter 3, which represents a new approach to the dynamic analy-

sis of adaptation to climate change within a simplified recursive IAM fed with various

potential sources of uncertainty. Many other additional features can be further incorpo-

rated into this model: uncertainty in the parameters governing the damage function,

alternative damage function specifications, persistent effects of technology shocks,...

Additionally, different types of adaptation could be jointly modelled. For example,

Bosello et al. (2010) construct a more involved framework in which different types of

adaptation can be found. In particular, they distinguish between anticipatory adapta-

tion (modelled as a stock variable), reactive adaptation (modelled as a flow variable)

and accumulation of reactive adaptation knowledge. These extensions are left for future

research papers.

Overall, this thesis represents a compendium of evidence reflecting the adverse

effects of climate change in modern economies, the limited capacity of humans to adapt
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to those effects and shows how uncertainties present in the decision-making procedures

favour tackling climate damages by directly addressing the causes rather than fighting

against its effects. This thesis also sends a message to the scientific community and to

the general public about the need to persuade in a prompt and intensive abatement of

greenhouse gas emissions to avoid the aggravation of adverse climate change effects.

Finally, this thesis set the seeds of a future research agenda based on the quantifi-

cation of the economic and social implications resulting from environmental changes

and the analysis and measurement of the effects that human-made decisions have in

the environment. I look forward to undertaking this agenda in the immediate future.
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